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Detecting a change in distribution from streaming data

Batches of data yt = {yt,i}
Nt

i=1 arrive in discrete time:

yt,i
iid∼ ft , i = 1, . . . ,Nt , t = 1, 2, . . .

At some unknown time v , ft changes:

ft =

¨

f0 for t ≤ v “pre-change” (known)

fc for t > v “post-change” (unknown)

The statistical problem

É We want to detect the change as quickly as possible, while
minimizing the number of false alarms.

É But no parametric forms for f0 or fc
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This talk: two parts

A ”windowed KS” test:

É Based on (but isn’t quite) the Kolmogorov–Smirnov statistic

É It is simple, robust, efficient, and intuitive to calibrate.

É Both the false-alarm rate and the power can be rigorously
analyzed.

É It outperforms existing sequential testing procedures in
practice.

A objective Bayesian test based on “Pólya tree discounting”:

É Harder and less intuitive to calibrate.

É Improves upon the KS test in simulation studies.

É Right now, just using a Bayes factor as a test statistic.

É Still a work in progress.
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Our motivating example: detecting radiological anomalies

We work with physicists who build devices and software for
radiological anomaly detection. These tools can be used to:

É Find and defuse a radiological dispersal device.

É Monitor a port for smuggled radiological material.

É Locate a lost source (e.g. at a hospital).

Three problems:

É Radiation is everywhere (NORM).

É NORM varies from place to place.

É Radiation is statistically noisy (due to quantum mechanics).

Current best solution = hire a Ph.D. in physics to stare at a
computer monitor.
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Our motivating example: detecting radiological anomalies

Our setup:

É Small cesium-iodide detector (on officer, in vehicle, etc.)

É Detector yields energies yt,i for photons arriving at time t

É Energies binned into discrete channels: 4,096 counts per
second × 24/7/365 × D detectors

É Detector hooked up to Raspberry Pi + iPhone that
continuously queries PostGIS database and compares yt versus
the known background spectrum f0 at the officer’s location

Radiological anomalies show up as changes in distribution:

É Are the recent yt,i ’s from f0 (the background spectrum)?

É Or from fc , a spectrum distorted by the presence of some
unknown anomaly?
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Our data
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Our data
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The whole pipeline

1) Instrument calibration (not discussed today)

É Cheap (≈ $5000) detectors allow us wider coverage but are
noisier (temperature, rain, instrument-level variability).

2) Background mapping (maybe a bit at the end)

É Significant spatial variation due to NORM, mostly in buildings

É “Sharp + smooth,” both in spectral and spatial dimensions

É Lots of data, unevenly distributed over monitoring area

3) Anomaly detection (most of this talk)
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Toy example
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Figure: A synthetic injection of 100 milliCurie source of Cesium 137
located at a distance of 150m from the detector. 9



Toy example
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Figure: The proposed test versus the pre-existing state of the art. Both
methods are calibrated to have a false-alarm rate of ≤1 in 1000. Left:
threshold chosen from our theory. Right: threshold from simulations.
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Basics

Let {yt,i}
Nt

i=1 be the set of measured energies from the gamma
rays arriving at time t. The laws of physics says that

yt,i
iid∼ ft , i = 1, . . . ,Nt , Nt ∼ Poisson(μ) ,

where ft is the gamma-ray spectrum at time t, and μ > 0.

Näıve approach: compare Nt with the background rate μ

É Different devices have different sensitivities to radiation: μ is
a joint property of the world and the measurement device.

É We also find noticeable differences in Nt observed using the
same detector from one day to the next

É Thus attempting to detect anomalies using Nt is too fraught.
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Basics

A better approach is to look for a change in ft :

yt,i
iid∼ ft ,

where

ft =

¨

f0 for t ≤ v

fc for t > v .

Key facts:

É Both v and fc are unknown.

É fc has no particular parametric form.

É f0 is “known” (OK, estimated—another fun problem).

É After calibration, both f0 and fc are consistent across devices.
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Basics

The goal: construct a stopping rule T :

É A procedure for detecting that a change-point has occurred,
i.e. that t ≥ v .

É When T = t, we stop the data-collection process and declare
that a change-point has occurred at some time during the
first t observations.

Performance of stopping rules typically evaluated using two criteria

É The expected “null” stopping time: E0(T ), or long ARL.
É The worst-case average detection delay, or short ARL:

Ēc(T ) = sup
s≥1

ess sup Es

h

(T − s + 1)+
�

�

�{yt,i}
Nt
i=1, t = 1, . . . , s − 1

i

.

É The ess sup takes the “worst-case” pre-change data.

É But not well understood when fC is unknown.
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Basics

Our approach:

É Define a stochastic process {∆t : t ∈ N}.

É Declare an alarm when ∆t > c .

É The number of false alarms up to a time horizon T < v is:

AT (∆, c) = |{t ∈ N : t ≤ T and ∆t ≥ c}| ,

É The delay time is

D(∆, c) = inf {t ∈ N : t > v and ∆t ≥ c} − v − 1.

É Goal: constrain E[AT (∆, c)] ≤ α and construct a procedure
with small E(D(∆, c)) under this constraint.

14



Existing work on anomaly detection

Retrospective detection:

É KS: Chan et al. (2014) and Reinhart et al. (2015)

É Spectral comparison ratio: Pfund et al. (2006), Du et al.
(2010), Reinhart et al. (2014)

É Neither fit the design requirements of the streaming-data
scenario.

Sequential SCR test:

É Pfund et al. (2010)

É Tuning parameter selection is opaque; seems underpowered in
experiments.
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Existing work on anomaly detection

Exponential-family methods:

É We could exploit the fact that the detector actually returns
discrete bin/channel counts xtj for bin j .

É Thus in principle, xtj ∼ Poisson(λj).

É Many methods could then work: e.g. Pollak (1987), Basseville
et al. (1993), Siegmund and Venkatraman (1995), Lai (1995).

Issues:

É This has the same (huge) problem as testing based on total
count rate μ: per-bin rates λj are not comparable across
devices.

É Moreover, theoretical guarantees apply to univariate,
continuous distributions. Neither hold here.
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Our approach: based on KS statistics

Notation:

É Let F0 be the CDF associated with the background f0.

É Define

F̂t(y) =
1

Nt

Nt
∑

i=1

1(−∞,yt,i ](y),

A “single-window” KS test would use the statistic

Dt =
p

Nt sup
y

�

�F0(y)− F̂t(y)
�

� .

This does not yield a good protocol for sequential detection:

É Either we pool batches of data and test retrospectively. . .

É . . . or we use Dt one step at a time and give up power.

17



The proposed test

The idea is simple:

É Pool data across an series of backward-looking windows.

É Test using the maximal KS statistic over those windows.

Let F̂ s:t(y) be the empirical CDF constructed from all data
collected from time s < t to time t:

F̂ s:t(y) =
1

∑k=t

k=s
Nk

t
∑

k=s

Nk
∑

i=1

1(−∞,yk ,i ](y).

Let ∆s:t be the corresponding KS statistic:

∆s:t =

√

√

√

√

t
∑

k=s

Nk sup
y
|F 0(y)− F̂ s:t(y)|.
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The proposed test

Define the window statistic Wt as

Wt = max
s:max{t−L,1}≤s≤t

∆s:t .

We propose to declare an anomaly at time

τL = min{t : Wt ≥ cL} .

where L ∈ N and cL > 0 are constants.

In words: we look back and see if there is evidence for a
changepoint between times max{t − L, 1} and t. The window
size L bounds the complexity for computing Wt as O(L).
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Example: 5 Steps After the Changepoint
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Example: 19 Steps After the Changepoint
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Example: 20 Steps After the Changepoint
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And that’s how we detected the anomaly
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Figure: The proposed test versus the pre-existing state of the art. Both
methods are calibrated to have a false-alarm rate of ≤1 in 1000. Left:
threshold chosen from our theory. Right: threshold from simulations.
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Key questions

What is the “lookback” penalty?

É Looking back across multiple lags = multiple testing.

É How should this affect the threshold for alarm?

Can we characterize the power of the procedure?

É Here power = time to detection.

How does it work in practice?
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Main theorem

Let Fc be the post-change CDF (i.e. for t ≥ v) and let

d(Fc ,F0) := sup
y

�

�F0(y)− Fc(y)
�

� ,

Theorem
Assume that s > v is fixed. Then

lim
t→∞

∆s:t = ∞ a.s.

provided that d(F0,Fc) > 0. Moreover, for cL > 0,

P



∆s:t > −cL + d(Fc ,F0)

√

√

√

√

t
∑

k=s

Nk



 ≥ 1− 2 exp(−2 c2
L

) .
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A corollary

Define, for T < v ,

AT =

�

�

�

�

§

t : t ≤ T , max
max{1,t−L}≤s≤t

∆s,t ≥ cL

ª

�

�

�

�

.

Here AT can be thought as the number of times that the process
exceeds the threshold within a window of length T when there is
no change point in {1, . . . ,T}.

Corollary

If T ≤ v , then
E (AT )

T
≤ 2L exp

�

−2 c2
L

�

.

This bounds the expected number of false alarms up to time T ,
provided that the change point happens after T .
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A corollary
This corollary is immediately practical:

É For an acceptable false-alarm rate r , choose cL so that the
expect number of false alarms is less r

Example:

É Suppose that L = 50.

É Goal: expected rate of false alarms, E (AT )/T , no more than
r = 1/1000.

É Requirement:

E (AT )

T
≤ 2L exp

�

−2 c2
L

�

≤ r

É If r = 0.001, this holds whenever

cL ≥

√

√

√
1

2
log(2L)−

1

2
log r ≈ 2.4 .
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The penalty for multiple testing
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Toy example
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Figure: The proposed test versus that of Hawkins (1988).

29



A small simulated-data example
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E (Nt) KS PKS EF GLR

100 152.6 197.0 317.1 257.2
500 31.2 94.7 45.2 41.0

1000 12.3 64.0 31.3 30.4

Table: Stopping times averaged over 100 data sets (smaller is better).
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A cesium anomaly
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A cesium anomaly

Dist. E (Nt) KS KS∗ SCR PKS EF GLR
50m 100 1.3 1.6 200 19.0 7.1 5.9
50m 500 1.0 1.0 1.0 9.2 1.9 1.7
50m 1000 1.0 1.0 1.0 5.9 1.2 1.1

100m 100 9.8 12.0 200 66.8 24.1 19.7
100m 500 2.6 3.1 8.7 30.6 9.0 8.7
100m 1000 1.6 1.8 1.1 19.6 6.9 6.4

150m 100 111.2 161.3 146.5 208.0 143.4 117.9
150m 500 19.6 25.4 188.7 88.8 28.8 27.4
150m 1000 9.4 13.4 167.3 69.7 18.9 18.8

Table: Average time to detection for the cesium example.
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A cobalt anomaly
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A cobalt anomaly

Dist. E (Nt) KS KS∗ SCR PKS EF GLR
50m 100 2.3 2.7 200 26.7 13.5 17.7
50m 500 1.0 1.0 21.4 12.9 7.6 8.9
50m 1000 1.0 1.0 1.0 8.1 5.1 5.2

100m 100 5.0 5.5 200 44.1 21.6 28.4
100m 500 1.4 1.6 170.1 20.9 12.1 14.4
100m 1000 1.0 1.1 7.8 13.0 10.0 9.9

150m 100 21.1 23.9 200 98.6 57.0 111.5
150m 500 4.9 5.9 194.9 46.3 25.7 31.0
150m 1000 2.9 3.3 168.5 28.7 22.0 21.6

Table: Average time to detection for the cesium example.
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A real field experiment
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A real field experiment

Test window KS KS∗ PKS EF GLR SCR

1 16 16 16 24 103 88
2 8 19 19 22 22 124
3 9 9 23 56 56 ∞
4 17 17 25 ∞ ∞ ∞
5 55 55 63 76 76 76
6 5 5 6 12 12 147
7 16 17 16 52 52 49
8 29 29 22 98 97 95

Table: Time to detection (measured by the number of discrete
two-second time steps required to raise an alarm). A detection time of ∞
means that method was not able to detect the anomaly.
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Summary

Our anomaly-detection method:

É Can be deployed in a streaming-data scenario.

É Has well-understood theoretical properties.

É Is easy to calibrate.

É Improves upon the state of the art.
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Part 2: a Bayesian formulation

A full Bayes formulation would involve:

1. a prior for fC , the space of possible post-change densities.

2. a set of prior probabilities over possible change-points
(perhaps out to a certain lag)

We haven’t tried to formulate model probabilities.

We’ve just focused on a prior for fC , and investigated the behavior
of the Bayes factor as a test statistic against the null.
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Part 2: a Bayesian formulation

Our approach:

É Based on a Polya-tree prior.

É In our examples, the pre- and post-change densities are similar.

É It is therefore natural to “center” the alternative at the null,
e.g. Berger and Guglielmi (2001).

Suppose we want to ask: did the change-point just happen?

É H0 : yi ∼ f0 for i = 1, . . .N

É H1 : (yi | f1) ∼ f1 for i = 1, . . .N, and f1 ∼ PT (f0, α).

É Fix the partitioning subsets as the dyadic quantiles of f0
(canonical centering)

É α optionally concentrates the beta-distribution splitting
probabilities

And so on for lag 2, lag 3, etc...
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Some simulated examples
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Example 1
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Example 2
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Example 3

43



Thank you!

Multiscale spatial density smoothing: an application to large-scale
radiological survey and anomaly detection. W. Tansey, A. Athey,
A. Reinhart, and James G. Scott. Journal of the American
Statistical Association 112(519): 1047–63 (2017).

Sequential nonparametric tests for a change in distribution: an
application to detecting radiological anomalies. O.H.M. Padilla,
A. Athey, A. Reinhart, J.G. Scott. arXiv:1612.07867
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Spatial variation in spectrum

0

100

200

300

400

0 100 200 300 400 500
Energy Channel

C
ou

nt
s

Cell 14 Counts

0.000

0.002

0.004

0.006

50 100 150 200
Energy Channel

D
en

si
ty

Global
Local

Cell 14 Global vs. Local

30.384

30.387

30.390

30.393

−97.735 −97.730 −97.725
lon

la
t

0

30

60

90

0 100 200 300 400 500
Energy Channel

C
ou

nt
s

Cell 62 Counts

0.000

0.002

0.004

0.006

50 100 150 200
Energy Channel

D
en

si
ty

Global
Local

Cell 62 Global vs. Local

30.384

30.387

30.390

30.393

−97.735 −97.730 −97.725
lon

la
t

Two different locations.
45



Multiscale spatial density smoothing

The idea: motivated by Pólya trees (c.f. Hanson and Yang, 2007).

É Split into sub-problems via recursive partitioning.

É Smooth the half-space probabilities over the spatial lattice
using binomial graph trend filtering.

É Merge the smoothed probabilities to yield f̂
(s)

0 , s ∈ V.

É Reserve the power/hassle/expense of full Bayes analysis for
the other parts of the pipeline.

Notable points:

É Reduces the functional smoothing problem to a set of
embarrassingly parallel scalar smoothing problems.

É Extremely fast and scalable to very large data sets (dominant
cost = loading data into memory).
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Recursive dyadic partitions
Let (x1, . . . , xn) be a sample from f (x).

É nγ: number of samples in the parent set Bγ.

É yγ0: number of samples in the left child set Bγ0.
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Spatial variation: a 2x2 example
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Spatial variation

Now consider a specific split in the tree and drop the γ index. We
want to estimate the “left-child” splitting probability across all
spatial sites in our graph G = (V, E):

y (s) ∼ Binom

 

n(s),
eβ

(s)

1 + eβ
(s)

!

, s ∈ V

We enforce spatial smoothness by solving the following
optimization problem for all splitting nodes, in parallel:

minimize
β∈Rn

∑

s∈V

¦

n(s) log
�

1 + eβ
(s)
�

− y (s)β(s)
©

+ λ‖Dβ‖1
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