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Introduction

This book is about data science. This term has no precise defini-
tion. Data science involves some statistics, some probability, some
computing—and above all, some knowledge of your data set (the
“science” part).

The goal of data science is to help us understand patterns of
variation in data: economic growth rates, dinosaur skull volumes,
student SAT scores, genes in a population, Congressional party
affiliations, drug dosage levels, your choice of toothpaste versus
mine . . . really any variable that can be measured.

To do that, we often use models. A model is a metaphor, a de-
scription of a system that helps us to reason more clearly. Like all
metaphors, models are approximations, and will never account for
every last detail. A useful mantra here is: all models are wrong,
but some models are useful.1 Aerospace engineers work with 1 Attributed to George Box.

physical models—blueprints, simulations, mock-ups, wind-tunnel
prototypes—to help them understand a proposed airplane design.
Geneticists work with animal models—fruit flies, mice, zebrafish—
to help them understand heredity. In data science, we work with
statistical models to help us understand variation.

Like the weather, most variation in the world exhibits some
features that are predictable, and some that are unpredictable. Will
it snow on Christmas day? It’s more likely in Boston than Austin,
and more likely still at the North Pole; that’s predictable variation.
But even as late as Christmas eve, and even at the North Pole,
nobody knows for sure; that’s unpredictable variation.

Statistical models describe both the predictable and the unpre-
dictable variation in some system. More than that, they allow us to
partition observed variation into its predictable and unpredictable
components—and not just in some loose allegorical way, but in
a precise mathematical way that can, with perfect accuracy, be
described as Pythagorean. (More on that later.)

This focus on the structured quantification of uncertainty is
what distinguishes data science from ordinary evidence-based rea-
soning. It’s important to know what the evidence says, goes this
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line of thinking. But it’s also important to know what it doesn’t
say. Sometimes that’s the tricky part.

We will learn data science for three purposes:

(1) to help us explore a large body of data, so that we might identify
predictable features or trends amid random variation.

(2) to test our beliefs about relationships among things we can
measure.

(3) to predict the future behavior of some system, and to say some-
thing useful about what remains unpredictable.

These are the goals not merely of data science, but of the scientific
method more generally.

What data science isn’t. Many people assume that the job of a data
scientist is to objectively summarize the facts, slap down a few
error bars, and get out of the way.

This view is mistaken. To be sure, data science demands a deep
respect for facts, and for not allowing one’s wishes or biases to
change the story one tells with the facts. But the process of an-
alyzing data is inescapably subjective, in a way that should be
embraced rather than ignored. Data science requires much more
than just technical knowledge of ideas from statistics and comput-
ing. It also requires care and judgment, and cannot be reduced to
a flowchart, a table of formulas, or a tidy set of numerical sum-
maries that wring every last drop of truth from a data set. There is
almost never a single “right” data-science approach for some prob-
lem. But there are definitely such things as good models and bad
approaches, and learning to tell the difference is important. Just
remember: calling a model good or bad requires knowing both the
tool and the task. A shop-window mannequin is good for display-
ing clothes, but bad for training medical students about vascular
anatomy. A big part of your statistical education is to hone this
capacity for deciding when a statistical model is fit for its intended
purpose.

Second, many people assume that data science must involve
complicated models and calculations in order to do justice to
the real world. Not always: complexity sometimes comes at the
expense of explanatory power. We must avoid building models
calibrated so perfectly to past experience that they do not gener-
alize to future cases. This idea—that theories should be made as
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complicated as they need to be, and no more so—is often called
“Occam’s Razor.” A good model will be simple enough to un-
derstand and interpret, but not so simple that it does any major
intellectual violence to the system being modeled. All models of
the world must balance these goals, and statistical models are no
exception.

Finally, many people also assume that data science involves
difficult, tedious mathematics. Happily, this isn’t true at all. In
fact, virtually all common techniques in data science are accessible
to anyone with a high-school math education, and these days all
the tedious calculations are taken care of by computers.

Data science then and now

On the time scale of important post-Enlightenment ideas, the
key tools of data science are middle-aged. A German astronomer
named Tobias Mayer was using something vaguely like linear
regression modeling (a data-science workhorse) as early as 1750.2 2 Stephen M. Stigler, The History of

Statistics: The Measurement of Uncer-
tainty before 1900, pp. 16–25. Harvard
University Press, 1986

But most scholars credit two later mathematicians—Legendre, a
Frenchmen; and Gauss, a German—with independently inventing
the method of least squares some time between 1794 and 1805. As
you will soon discover (or may already know), the method of least
squares is our primary mathematical workhorse for fitting models
to data. That makes regression modeling newer than the invention
of calculus (credited jointly to Leibniz and Newton in the late
1600’s), but older than the idea of evolution by natural selection
(credited jointly to Darwin and Wallace over a period spanning the
1830’s to the 1850’s).

For most of the nineteenth century, data science largely re-
mained the concern of a highly specialized group of astronomers
and geophysicists. But in our own age—one of fast, cheap com-
puters and abundant data—it has become ubiquitous. The very
same principle of least squares proposed by Legendre and Gauss
remains, over two hundred years later, an important part of the
day-to-day toolkit for solving problems in fields from aeronautics
to zoology and everywhere in between. If you’ve ever wondered
why your social media accounts are eerily prescient—about your
friends, about headlines that might appeal to you, about products
you might want to buy—you can thank a data scientist.

Of course, our political and cultural climate still exhibits a
streak of distrust toward data. Why else would Winston Churchill’s
brazen instructions to a young protégé sound so depressingly fa-
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miliar?

I gather, young man, that you wish to be a Member of Parlia-
ment. The first lesson that you must learn is that, when I call
for statistics about the rate of infant mortality, what I want is
proof that fewer babies died when I was Prime Minister than
when anyone else was Prime Minister.3 3 Quoted in The Life of Politics (1968),

Henry Fairlie, Methuen, pp. 203–204

And why else would the famous remark, popularized by Twain
and attributed to Disraeli, remain so apt, even a century later?

Figures often beguile me, particularly when I have the arrang-
ing of them myself; in which case the remark attributed to
Disraeli would often apply with justice and force: ‘There are
three kinds of lies: lies, damned lies, and statistics.’4 4 Chapters from My Autobiography, North

American Review (1907)
How do you tell the difference between “robust, unbiased evi-

dence,” misleading irrelevance, and cynical fraud? In considering
this question, you will already have appreciated at least two good
reasons to learn data science:

(1) To use data honestly and credibly in the service of an argu-
ment you believe in.

(2) To know how and when to be skeptical of someone else’s
damned lies.

For as John Adams put it,

Facts are stubborn things; and whatever may be our wishes,
our inclinations, or the dictates of our passion, they cannot
alter the state of facts and evidence.5

5 ’Argument in Defense of the Soldiers
in the Boston Massacre Trials’ (1770)
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Data exploration

Supply and demand, chocolate and peanut butter, education and
income . . . some things just go hand in hand. In each case, a par-
ticular idea about how things work turns upon the interpretation
of an observed relationship between things we can measure. To
do this correctly requires care, judgment—and the right toolkit.
The goal of this chapter is to equip you with some basic visual and
numerical tools for exploring multivariate data sets, with an eye
towards finding interesting relationships among variables.

Cases and variables. In statistics, we typically refer to the cases and
variables of a data set. The cases are the basic observational units
that we’re interested in: people, houses, cars, guinea pigs, etc. The
variables are the different kinds of information we have about each
case—for example, the horsepower, fuel economy, and vehicle class
for a car. We typically organize a data set into a data frame. A data
frame is like a simple spreadsheet where each case is a row and
each variable is a column, like in Table 1.1.

Variables come in two basic kinds. Numerical variables are rep-
resented by a number, like horsepower. Categorical variables are
described by the answer to a multiple-choice question, like vehicle
class. This chapter will describe some strategies for summariz-
ing relationships among both kinds of variables, as well as some
further refinements to this basic “numerical versus categorical”
distinction.

Table 1.1: A simple example of a data
frame. Each case is a car, and there
are five variables: horsepower, city gas
mileage, highway gas mileage, weight
(in pounds), and vehicle class.

Horsepower CityMPG HighwayMPG Weight Class

BMW 325xi 184 19 27 3461 Sedan
Chevrolet Corvette 350 18 25 3248 Sports

Mercedes-Benz CL500 302 16 24 4085 Sedan
Dodge Neon 132 29 36 2626 Sedan
Acura MDX 265 17 23 4451 SUV
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Variation across categories

Many of the data sets you’ll meet will involve categories: choco-
late or vanilla; rap or country; Toyota, Honda, or Hyundai; butcher
or baker or candlestick maker. A simple, effective way to summa-
rize these categorical variables1 is to use a contingency table. On the 1 Categorical variables are sometimes

referred to as factors, and the categories
themselves as the levels of the factor.
The R statistical software package uses
this terminology.

Titanic, for example, a simple two-way table reveals that women
and children survived in far greater numbers than adult men:

Girl Woman Boy Man

Survived 50 242 31 104

Died 22 74 51 472

Table 1.2: A two-way table, because
there are two categorical variables by
which cases are classified. The data
are available in the R package effects.
Originally compiled by Thomas Cason
from the Encyclopedia Titanica.

We call this a two-way or bivariate table because there are two
variables are being compared: survival status versus type of per-
son. The categories go along the rows and columns of the table;
the cell counts show how many cases fall into each class. The pro-
cess of sorting cases into the cells of such a table is often called
cross-tabulation.

We can also make multi-way tables that show more than two
variables at once. Given the constraints of a two-dimensional page,
multiway tables are usually displayed as a series of two-way ta-
bles. As the following three-way table reveals, richer passengers, of
either sex, fared better than others.

Cabin Class 1st 2nd 3rd

Female
Survived 139 94 106

Died 5 12 110

Male
Survived 61 25 75

Died 118 146 418

Table 1.3: An example of a multi-way
table, where counts are classified by
cabin class, sex, and survival. NB: pas-
sengers of unknown age are included in
this table, but not the previous one.

Tables are almost always the best way to display categorical data
sets with few classifying variables, for the simple reason that they
convey a lot of information in a small space.2 2 This animation provides some good

guidelines for formatting tables.

Ordinal and binary variables. If a categorical variable has only
two options (heads or tails, survived or died), we often call it an
indicator, binary, or dummy variable. (These names can be used
interchangeably.)

http://i.imgur.com/ZY8dKpA.gif
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Some categories have a natural ordering, like measures of sever-
ity for a hurricane, or responses to a survey about consumer satis-
faction. (Has your experience with our call center been Atrocious,
Merely Bad, Acceptable, Good, or Excellent?) These are called or-
dinal variables. Ordinal variables differ from numerical variables in
that, although they can be placed in a definite order, they cannot
be compared using the laws of arithmetic. For example, we can’t
subtract “Good” from “Excellent” and get a meaningful answer, in
the way we can subtract $1000 from $5000 and get a number.

Relative risk

The relative risk, sometimes also called the risk ratio, is a widely
used measure of association between two categorical variables.
To introduce this concept, let’s examine a tidbit of data from the
PREDIMED trial, a famous study on heart health conducted by
Spanish researchers that followed the lifestyle and diet habits of
thousands of people over many years, beginning in 2003.3 3 Estruch R, Ros E, Salas-Salvado J, et al.

Primary prevention of cardiovascular
disease with a Mediterranean diet. N
Engl J Med 2013;368:1279-1290. The
full text of the article is available at
http://www.nejm.org/doi/full/10.

1056/NEJMoa1200303

The main purpose of the PREDIMED trial was to assess the
effect of a Mediterranean-style diet on the likelihood of some-
one experiencing a major cardiovascular event (defined by the
researchers as a heart attack, stroke, or death from cardiovascular
causes). But as part of the study, the researchers also collected data
on whether the trial participants were, or had ever been, regular
smokers. The table below shows the relationship between smoking
and whether someone experienced a cardiovascular event during
the study period.

Current or former smoker?
No (n = 3892) Yes (n = 2432)

No event 3778 2294

Event 114 138

Let’s compare the absolute risk of cardiovascular events for
smokers, versus that of non-smokers.4 Among the smokers, 138

4 By “absolute risk,” we simply mean
the chance of an event happening.of 2432 people (5.7%) experienced an event; while among the

non-smokers, 114 of 3892 people (2.9%) experienced an event. To
compute the relative risk of cardiovascular events among smokers,
we take the ratio of these two absolute risks:

Relative risk =
138/2432
114/3892

= 1.94 .

https://en.wikipedia.org/wiki/Relative_risk
http://www.nejm.org/doi/full/10.1056/NEJMoa1200303
http://www.nejm.org/doi/full/10.1056/NEJMoa1200303
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This ratio says that smokers were 1.94 times more likely than non-
smokers to experience a cardiovascular event during the study.5 5 Of course, this doesn’t prove that the

smoking caused the cardiovascular
events. One could argue that the smok-
ers may have had other systematically
unhealthier habits that did them in
instead, and the smoking was merely a
marker of these other habits. We’ll soon
talk about this issue of confounding
much more.

More generally, for any event (a disease, a car accident, a mort-
gage default) and any notion of “exposure” to some factor (smok-
ing, driving while texting, poor credit rating), the relative risk is

Relative risk =
Risk of event in exposed group

Risk of event in non-exposed group
.

The relative risk tells us how much more (or less) likely the event
is in one group versus another. It’s important to remember that the
relative risk (in our example, 1.94 for smokers) is quite different
from the absolute risk (in our example, 0.057 for smokers). This
distinction is often missed or elided in media coverage of health
issues. See, for example, this blog post from the UK’s cancer-
research funding body about news reports of cancer studies.

Variation of numerical variables

Figure 1.1 depicts a histogram of daily average temperatures in
two American cities—San Diego, CA, and Rapid City, SD—for
every day from January 1995 to November 2011. Temperature is
an example of a numerical variable, or something for which numer-
ical comparisons are meaningful (twice as far, six times as fast,
$17 cheaper, and so forth). Numerical variables can be discrete or
continuous. Temperature is continuous; we measure it in arbitrar-
ily small increments. Marbles, on the other hand, are discrete; we
count them on our fingers and toes.

A histogram is a great way to depict the distribution of a nu-
merical variable. To construct one, we first partition the range of
possible outcomes (here, temperatures) into a set of disjoint in-
tervals (“bins”). Next, we count the number of cases that fall into
each bin. Finally, we draw a rectangle over each bin whose height
is equal to the count within each bin.6 6 Technically this is called a frequency

histogram; one could also make a
density histogram in which the heights of
the bars are scaled appropriately so that
the total area of all the bars sums to 1.

The histogram in Figure 1.1 suggest two obvious, meaningful
questions we can ask about a numerical variable like temperature:
where is the middle of the sample, and how much does a typical
case vary from the middle?

You’re probably already aware of more than more way to an-
swer the question, “Where is the middle?”

• There’s the sample mean, written as ȳ. If we have n data

http://scienceblog.cancerresearchuk.org/2013/03/15/absolute-versus-relative-risk-making-sense-of-media-stories/
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Figure 1.1: Daily average temperatures
for San Diego and Rapid City, 1995–
2011. These data are visualized in
a histogram, which is a simple and
effective way to depict the variation of a
single numerical variable across many
cases.

points {y1, . . . , yn}, then

ȳ =
1
n

n

∑
i=1

yi .

The subscript i’s run from case 1 to case n, where n is the
number of data points in the sample. In many data sets the
actual ordering of cases won’t matter, and will just reflect the
arbitrary ordering of the rows in your data frame.7 7 An obvious exception is in the analysis

of time-series data, where the ordering
of observations in time may be highly
meaningful.

• There’s the median, or the halfway point in a sample.

• There’s also the mode, or the most common value.

These different ways of quantifying the middle value all have
different properties. For example, the median is less sensitive than
the mean to extreme values in your sample; there can be more
than one mode in a sample, but only one mean or median.8 8 For example, consider the data set

{1, 2, 3, 3, 4, 4, 5}.

Sample standard deviation and sample variance

Another important question is, “How spread out are the data
points from the middle?” Figure 1.1 drives home the importance
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of dispersion in making useful comparisons. Not only are average
temperatures lower overall in Rapid City than in San Diego, but
they are also a lot more variable: the coldest days are much colder
in Rapid City, but the hottest days are hotter, too.

As with the notion of “middle” itself, there is more than one
way of quantifying variability, and each way is appropriate for
different purposes. Let’s follow the line of thinking that leads us to
the standard deviation, which is probably the most common way of
measuring dispersion. Suppose we choose to measure the middle
of a sample y1, . . . , yn using the mean, ȳ. Each case varies from
this middle value by its deviation, yi − ȳ. Why not, therefore, just
compute the average deviation from the mean? Well, because

1
n

n

∑
i=1

(yi − ȳ) =
1
n

n

∑
i=1

yi −
n
n

ȳ

= ȳ− ȳ

= 0 .

The positives and negatives cancel each other out. We could cer-
tainly fix this by taking the absolute value of each deviation, and
then averaging those:

M =
1
n

n

∑
i=1
|yi − ȳ| .

This quantity is a perfectly sensible measure of the “typical de-
viation” from the middle. Fittingly enough, it is called the mean
absolute deviation of the sample.

But it turns out that, for the purposes of statistical modeling, a
quantity called the sample variance makes more sense:

s2 =
1

n− 1

n

∑
i=1

(yi − ȳ)2 .

That is, we square each deviation from ȳ, rather than take the ab-
solute value. Remember that when we square a negative number,
it becomes positive, so that we don’t have the problem of the posi-
tives and negatives cancelling each other out.

The definition of sample variance raises two questions:

(1) Why do we divide by n− 1, when dividing by n would seem
to make more sense for computing an average?

(2) Why do we square the deviations, instead of taking absolute
values as above?
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To answer the first question: we divide by n − 1 rather than n
for obscure technical reasons that, despite what you may read in
other statistics textbooks, just aren’t that important. (It has to do
with “unbiased estimators,” which, despite the appealing name,
are overrated.) Mainly we use n− 1 to follow convention.

As for the second question: because sums of squares are spe-
cial! In all seriousness, there are deep mathematical reasons why
we choose to measure dispersion using sums of squared devia-
tions, rather than the seemingly more natural sums of absolute
deviations. You’ll learn why in a future chapter, but it you want a
preview, think about Pythagoras and right triangles. . . .

Of course, computing the sample variance leaves us in the awk-
ward position of measuring variation in the squared units of what-
ever our variable is measured in. This is not intuitive; imagining
telling someone that the mean temperature in Rapid City over
the last 17 years was 47.3 degrees Fahrenheit, with a sample vari-
ance of 402 degrees squared. This is a true statement, but nearly
uninterpretable.

Luckily, this is easily fixed by taking the square root of the
sample variance, giving us the sample standard deviation:

s =

√
1

n− 1

n

∑
i=1

(yi − ȳ)2 . (1.1)

Now we’re back to the original units, and an interpretable mea-
sure of “typical deviation from the middle”—for Rapid City, 20.1
degrees. This looks about right from the histogram below; the
blue dot is the sample mean, and the blue line stretches 1 sample
standard deviation to either side of the mean.
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Figure 1.2: The histogram shows
average daily temperatures in Rapid
City. The blue dot is the sample mean,
and the blue line shows an interval
encompassing one sample standard
deviation to either side of the sample
mean.

Two other simple measures of spread are worth mentioning
briefly. First, there’s the range, or the difference between the largest
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and smallest values in the sample. There’s also the interquartile
range, or the difference between the 75

th and 25
th percentiles. This

is robust to extreme values, since it involves only the middle 50%
of the sample.

Percentiles, quantiles, and coverage intervals

Another useful way to summarize the variation of a numerical
variable across cases is to compute a set of percentiles, also called
quantiles. A familiar example is the median: it happens that ex-
actly 50% of the daily average temperatures in Rapid City fall be-
low fall below 47.6 degrees, and we call this point the median (or
the 50th percentile). Similarly, 10% of days in Rapid City are colder
than 20.7 degrees, and 90% of days are colder than 73.2 degrees;
these are the 10th and 90th percentiles, respectively. A quantile is
just a percentile expressed in terms of a decimal fraction; the 80th
percentile and 0.8 quantile are the same number.

A common way to summarize a distribution of a numerical
variable is to quote a coverage interval defined by two percentiles,
like the 10th and 90th percentiles (which covers 80% of the cases)
or the 2.5th and 97.5th percentiles (which covers 95% of the cases).
So, for example, we might quote an 80% coverage interval for
daily average temperatures in Rapid City as (20.7, 73.2), whose
endpoints are formed from the 10th and 90th percentiles.

Standardization by z-scoring

Which temperature is more extreme: 50 degrees in San Diego, or
10 degrees in Rapid City? In an absolute sense, of course 10 de-
grees is a more extreme temperature. But what about in a relative
sense? In other words, is a 10-degree day more extreme for Rapid
City than a 50-degree day is for San Diego? This question could cer-
tainly be answered using quantiles, which you’ve already learned
how to handle. But let’s discuss a second way: by calculating a
z-score for each temperature.

The z-score of some quantity x is the number of standard devi-
ations by which x is above its mean. If a z-score is negative, then
the corresponding observation is below the mean.

To calculate a z-score for a number x, we subtract the corre-
sponding mean µ and divide by the standard deviation σ:

z =
x− µ

σ
.
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For a 50-degree day in San Diego, this is:

z =
50− 63.1

5.7
≈ −2.3 .

Or about 2.3 standard deviations below the mean. On the other
hand, for a 10-degree day in Rapid City, the z-score is

z =
10− 47.3

20.1
≈ −1.9 .

Or about 1.9 standard deviations below the mean. Thus a 50-
degree day in San Diego is actually more extreme than a 10-degree
day in Rapid City! The reason is that temperatures in Rapid City
are both colder on average (lower mean) and more variable (higher
standard deviation) than temperatures in San Diego.

As this example suggests, z-scores are useful for comparing
numbers that come from different distributions, with different
statistical properties. It tells you how extreme a number is, relative
to other numbers from that some distribution. We often think of
the normal distribution as a useful reference here for interpreting
z-scores. The normal distribution has the property that about 68%
of observations fall within z = 1 standard deviation of the mean,
and about 95% fall within z = 2 standard deviations.

Variation between, and within, groups

A common situation is that we have both categorical and nu-
merical data about each case in a data set. For example, Table 1.4
below shows the average SAT math and verbal scores, stratified by
college, for undergraduates in the incoming fall of 2000 freshmen
class at the University of Texas at Austin. All 5,191 students who
went on to receive a bachelor’s degree within 6 years are included;
those who dropped out, for whatever reason, are not.

The table tells you something about how the numerical vari-
ables (test scores) change depending upon the categorical variable
(college), and they are superficially similar to the contingency ta-
bles we just encountered. They highlight interesting and useful
facts about variation between the groups. Math skills, for example,
are probably more important for engineering majors than English
majors, and this is reflected in the differences between the group-
level means.
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Average SAT
College Math Verbal

Architecture 685 662

Business 633 597

Communications 592 609

Education 555 546

Engineering 675 606

Fine Arts 597 594

Liberal Arts 598 590

Natural Sciences 633 597

Nursing 561 555

Social Work 602 589

Table 1.4: Average SAT math and verbal
scores, stratified by college, for entering
freshmen at UT–Austin in the fall of
2000. Collected under the Freedom of
Information Act from the state of Texas.

Table 1.4 does differ from a contingency table, however, in one
crucial respect: the entries in the table are not counts, but group-
level averages. Notice that, to depict between-group variation, the
table has reduced each college to a typical case, represented by
some hypothetical student who earned the college-wide average
SAT scores on both the math and verbal sections. In doing so,
it has obscured the underlying variability of students within the
colleges. But as our example of city temperatures demonstrated,
sometimes this variability is an important part of the story as well.

Boxplots

This is where boxplots are useful: they allow you to assess vari-
ability both between and within the groups. In a boxplot, like the
ones shown in Figure 1.3, there is one box per category. (The top
panel shows a boxplot for SAT Math scores; the bottom, for SAT
Verbal scoers.) Each box shows the within-group variability, as mea-
sured by the interquartile range of the numerical variable (SAT
score) for all cases in that category. The middle line within each
box is the median of that category, and the differences between
these medians give you a sense of the between-group variability. In
this boxplot, the whiskers extend outside the box no further than
1.5 times the interquartile range. Points outside this interval are
shown as individual dots.

A table like 1.4 focuses exclusively on the between-group vari-
ability; it reduces each category to a single number, and shows
how those numbers vary from one category to the next. But in
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Figure 1.3: Boxplots of the full data set
used to form the means in Table 1.4.
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35 Figure 1.4: For comparison, the table of

within-group means is below. Notice
how the within-group variability
evident in the boxplots at left simply
disappears when presented in the form
of a summary table, below:

many data sets, it is actually the within-group variability that mat-
ters most. For example, as Figure 1.3 shows, SAT scores vary much
more within a college as they do between colleges. For example,
there is 52-point difference in average SAT math scores between
Architecture students and Natural Science students. But within
Natural Sciences, the interquartile range is nearly twice as large:
100 points.

Dose (mg) Tooth len.

0.5 7.98

1.0 16.77

2.0 26.14

The situation is quite different Figure 1.4. These boxplots show
the growth of guinea pigs’ teeth versus their daily dosage of Vi-
tamin C. Like humans, but unlike most other mammals, guinea
pigs need Vitamin C to keep rollin’, yet they cannot synthesize
their own. Their vitamin C intake is strongly predictive of their
overall health, measured in this case by the length of their teeth.
In this boxplot, we see comparatively more variability between the
groups, whose boxplots almost don’t overlap.

The same comparison will come up again and again: between-
group variability (the differences between typical or average group
members) versus within-group variability (the variation of cases
within a single group). We’ll soon make this comparison mathe-
matically rigorous, but these examples convey the essence of the
idea:

• A UT student’s college tells you something, though not ev-
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erything, about his or her likely SAT scores.

• A guinea pig’s Vitamin C regimen tells you something,
though not everything, about its tooth growth. But in a rela-
tive sense, it tells you more than a UT student’s college tells
you about his or her SAT scores.

Always remember that a table of group-wise means does not de-
pict “data” as such, but an abstraction of some typical group mem-
ber. This abstraction may be useful for some purposes. But within-
group variability is also important, and may even be the dominant
feature of interest. In this case, presenting the group-wise means
alone, without the corresponding plots or measures of variability,
may obscure more than it reveals.

Dot plots

Predation Index (5 = most in danger)
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Figure 1.5: Dreaming hours per night
versus danger of predation for 50 mam-
malian species. Data from: “Sleep in
Mammals: Ecological and Constitu-
tional Correlates,” Allison and Cicchetti
(1976). Science, November 12, vol. 194,
pp. 732-734. Photo of the dreaming crit-
ter from the MIT News office (web.mit.
edu/newsoffice/2001/dreaming.html).

The dot plot is a close cousin of the boxplot. For example, the
plot in Figure 1.5 depicts a relationship between the length of
a mammal’s dreams (as measured in a lab by an MRI machine)
and the severity of the danger it faces from predators. Each dot
is a single species of mammal—like, for example, the dreaming
critter at right. The predation index is an ordinal variable running
from 1 (least danger) to 5 (most danger). It accounts both for how
likely an animal is to be preyed upon, and how exposed it is when
sleeping. Notice the direction of the trend—you’d sleep poorly too
if you were worried about being eaten.

web.mit.edu/newsoffice/2001/dreaming.html
web.mit.edu/newsoffice/2001/dreaming.html
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Figure 1.6: Daily peak electricity de-
mand (stratified by month) in Raleigh,
NC from 2006–09. The dashed line
is the average peak demand for the
whole data set, and the blue dots are
the month-by-month means.

As you can see, the dot plot is useful for small data sets, when a
boxplot is no simpler than just plotting the cases group by group.
Strictly speaking, the points should all line up vertically with their
corresponding values of predation index, on the x-axis. But a
small amount of artificial horizontal jitter has been added to the
dots, which allows the eye to distinguish the individual cases more
easily.

Dot plots can also be effective for larger data sets. In Figure
1.6 we see four years of data on daily peak electricity demand for
the city of Raleigh, NC, stratified by month of the year. Both the
between-group and within-group variation show up clearly.

Group means and grand means

If you looked carefully, you may have noticed two extra features
of the dot plots in Figures 1.5 and 1.6. The square blue dots show
the group means for each category. The dotted green line shows the
grand mean for the entire data set, irrespective of group identity.
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Notice that, in plotting these means along with the data, we have
implicitly partitioned the variability:

Individual case = Group mean + Deviation of that case

Individual case = Grand mean + Deviation of group + Deviation of that case

This is just about the simplest statistical model we can fit, but
it’s still very powerful. We’ll revisit it soon.

More than one numerical variable

Our basic tool for visualizing a bivariate relationship between two
numerical variables is the scatter plot. Figure 1.7 shows a plot of
the daily returns for Microsoft stock versus Apple stock for every
trading day in 2015. Every dot corresponds to a day. The location
of the dot along the horizontal axis shows the Apple return, and
the location on the vertical axis shows the Microsoft return, for
that day. In this case, we can see that Microsoft and Apple stocks
tend to move up and down together. (Most stocks do.) We can also
see the speckling of outliers: those points that are visibly separate
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Joint variation in Apple and Microsoft stock prices, 2015
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Figure 1.7: A scatter plot of the daily
returns for Microsoft stock, versus those
of Apple stock, for every trading day
in 2015. The daily return is the implied
interest rate from holding a stock from
the end of one trading day to the end
of the next. For example, Apple stock
closed at $105.95 per share on January
7th and at $110.02 on January 8th. Thus
the return for January 8th was

110.02− 105.95
105.95

≈ 0.038 ,

or about a 3.8% daily return. On the
same day, holders of Microsoft stock
enjoyed a 2.9% return.
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Figure 1.8: A pairs plot: a matrix
of four pairwise scatter plots for the
daily returns of Apple, Facebook,
Microsoft, and Amazon stocks in 2015.
The histograms along the diagonal
also label the rows and columns of the
matrix: e.g. the plot in the second row
has Facebook returns along the vertical
axis, while the plots in the second
column both have Facebook returns
along the horizontal axis.
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from the main cloud and that represent very good (or bad) days
for holders of these two stocks.

A simple way to visualize three or more numerical variables is
via a pairs plot, as in Figure 1.8. A pairs plot is a matrix of simpler
plots, each depicting a bivariate relationship. In Figure 1.8, we
see scatterplots for each pair of the daily returns for Microsoft,
Facebook, Apple, and Amazon stocks. The histograms on the
diagonal serve a dual purpose: (1) they show the variability of
each stock in isolation; and (2) they label the rows and columns, so
that you know which plots compare which variables.

Sample correlation. The sample correlation coefficient is a standard
measure of the strength of linear dependence between two vari-
ables in a sample. If we label the first variable as x1, . . . , xn and the
second as y1, . . . , yn, then the correlation coefficient is defined as

r = ∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
, (1.2)

where sx and sy are the sample standard deviations of the X and
Y variables. At right you see scatter plots that depict examples
of strong positive (top) and weak negative (bottom) correlation.
Sample correlation is between 1 and −1, which are the extremes of
perfect positive and perfect negative correlation.

r = 0.9

r = -0.3

To summarize the correlation among a set of more than two
variables, we typically calculate a correlation matrix whose entry in
row i, column j is the correlation between variable i and variable j.
For the four stocks depicted in Figure 1.8, the correlation matrix is
below. Notice that the matrix is symmetric and has ones along the
diagonal (because a variable is perfectly correlated with itself):

Apple Microsoft Facebook Amazon

Apple 1.00 0.52 0.55 0.36

Microsoft 0.52 1.00 0.47 0.52

Facebook 0.55 0.47 1.00 0.50

Amazon 0.36 0.52 0.50 1.00

Caveats. A key fact to remember is that correlation measures the
strength of linear dependence. If two variables don’t fall roughly
along a straight line in a scatter plot, then correlation can be mis-
leading. For example, consider Figure 1.9: four different data sets,
four different stories about what’s going on. Yet all have the same
correlation: r = 0.816.
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Figure 1.9: above. Data taken from
F.J. Anscombe, “Graphs in Statistical
Analysis.” American Statistician, 27

(1973), pp. 17–21

Figure 1.10: left. Each panel shows
obvious dependence, but has a sample
correlation of r = 0.

Another important fact is that a sample correlation of 0 (“un-
correlated”) does not necessarily mean that two variables are un-
related. In fact, the correlation coefficient is so intimately tied up
with the assumption of a linear relationship that it breaks down
entirely when used to quantify the strength of nonlinear relation-
ships. In each of the three plots in Figure 1.10, for example, there
is an obvious (nonlinear) relationship between the two variables.
Yet the sample correlation coefficient for each of them turns out to
be exactly zero.

The lesson of these two plots is that you should always plot
your data. After all, a sample correlation coefficient is just one
number. It can only tell you so much about the relationship be-
tween two variables, and a scatterplot (or boxplot, or dot plot) is a
much, much richer summary of that relationship.
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Figure 1.11: Highway gas mileage
versus engine power for 387 vehicles in
five different classes.Further multivariate plots

In visualizing data, we are usually constrained by the limitations
of the two-dimensional page or screen. Nevertheless, there are
many cool techniques for showing more than two variables at
once, despite these limitations.

Lattice plots

Figure 1.11 shows three variables from a data set on 387 vehi-
cles: the highway gas mileage, the engine power (in horsepower),
and the class of the vehicle (minivan, sedan, sports car, SUV, or
wagon). This is done via a lattice plot, which displays the relation- Another term for a lattice plot is a

trellis plot.ship between two variables, stratified by the value of some third
variable. In this case the main relationship of interest is between
mileage and engine power, and the stratifying variable is vehicle
class. Notice how figure 1.11 repeats a scatterplot of MPG versus
horsepower five times: one plot for the vehicles in each class. To
facilitate comparisons across the strata, both the horizontal and
vertical axes are identical in each plot.

The figure suggests several facts:
• Nobody makes a powerful minivan.
• The overall MPG–horsepower trend is negative for all classes.
• The SUVs have the worst gas mileage overall, and in par-

ticular have worse mileage than the sports cars and wagons
despite having similar or lower power. (Compare the average
vertical location in the SUV panel versus the others).

• The MPG–horsepower relationship becomes nonlinear for
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Figure 1.12: Highway gas mileage
versus engine power for 387 vehicles in
five different classes.sedans at low horsepower, but perhaps not for wagons.

• As engine power increases, the dropoff in gas mileage looks
steeper for SUVs than for sports cars.

• For a fixed level of engine power, there is considerable vari-
ability in fuel economy. (Pick a fixed point on the horizontal
axis and focus on the cars near there. Now look at the corre-
sponding variability along the vertical axis for those cars.)

We can make a lattice of boxplots as well. For example, Figure
1.12 shows boxplots of engine power versus number of engine
cylinders, stratified by vehicle class. This suggests an explanation
for the fact that engine power is not a perfect predictor of fuel
economy: some cars get more power out of a smaller engine, and
are presumably more efficient as a result.

With a numerical variable. In Figure 1.11, the stratifying variable
is categorical. But we can also stratify a data set according to a
numerical variable, by discretizing that variable into bins—much
in the same way we do when we make a histogram. Figure 1.13

shows the latitude, longitude, and depth (in kilometers) beneath
the earth’s surface for the epicenter of every earthquake recorded
since 1963 near Fiji, an island in the South Pacific Ocean. The
“depth” variable has been discretized into nine equal-length bins.
The nine panels show the latitude and longitude of the quakes
whose depths fell in each interval, labeled at the top of each panel.

As depth increases (going left to right, top to bottom), a spatial
pattern emerges. The shallower earthquakes are at the intersection
of two major tectonic plates. The deeper quakes emanate from the
Tonga Trench—35,702 feet below the sea at its deepest point.9 9 And the final resting place of 3.9

kilograms of radioactive plutonium-238

from the ill-fated Apollo 13 mission.

https://en.wikipedia.org/wiki/Cylinder_(engine)
https://en.wikipedia.org/wiki/Cylinder_(engine)
http://www.spacesafetymagazine.com/aerospace-engineering/nuclear-propulsion/will-anyone-recover-apollo-13s-plutonium/
http://www.spacesafetymagazine.com/aerospace-engineering/nuclear-propulsion/will-anyone-recover-apollo-13s-plutonium/
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the range of depths beneath the earth’s
surface (in kilometers) is labeled at the
top of each panel.





2
Fitting equations to data

So far we’ve concentrated on relatively simple visual and nu-
merical summaries of data sets. In many cases we will want to go
further, by fitting an explicit equation—usually called a regression
model—that describes how one variable changes as a function of
some other variables. There are many reasons we might want to
do this. Here are four that we’ll explore at length:

• to make a forecast;
• to summarize the trend in a data set;
• to make comparisons that adjust statistically for some sys-

tematic effect; and
• to quantify the amount of variability in some variable that

cannot be predicted, in the context of what can be predicted.
This chapter introduces the idea of a regression model and builds
upon these themes.

Fitting straight lines

As a running example we’ll use the data from Figure 2.1, which
depicts a sample of 104 restaurants in the vicinity of downtown
Austin, Texas. The horizontal axis shows the restaurant’s “food
deliciousness” rating on a scale of 0 to 10, as judged by the writers
of a popular guide book entitled Fearless Critic: Austin. The vertical
axis shows the typical price of a meal for one at that restaurant, in-
cluding tax, tip, and drinks. The line superimposed on the scatter
plot captures the overall “bottom-left to upper-right” trend in the
data, in the form of an equation: in this case, y = −6.2 + 7.9x. On
average, it appears that people pay more for tastier food.

This is our first of many data sets where the response (price,
Y) and predictor (food score, X) can be described by a linear
regression model. We write the model in two parts as “Y =

β0 + β1X + noise.” The first part, the function β0 + β1X, is called
the linear predictor—linear because it is the equation of a straight
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Figure 2.1: Price versus reviewer food
rating for a sample of 104 restaurants
near downtown Austin, Texas. The
data are from a larger sample of 317

restaurants from across greater Austin,
but downtown-area restaurants were
chosen to hold location relatively
constant. Data from Austin Fearless
Critic, www.fearlesscritic.com/
austin. Because of ties in the data,
a small vertical jitter was added for
plotting purposes only. The equation of
the line drawn here is y = −6.2 + 7.9x.

line, predictor because it predicts Y. The second part, the noise,
is a crucial part of the model, too, since no line will fit the data
perfectly. In fact, we usually denote each individual noise term
explicitly:

yi = β0 + β1xi + ei . (2.1)

An equation like (2.1) is our first example of a regression model.
The intercept β0 and the slope β1 are called the parameters of the
regression model. They provide a mathematical description of how
price changes as a function of food score. The little ei is called the
residual for the ith case—residual, because it’s how much the line
misses the ith case by (in the vertical direction). The residual is
also a fundamental part of the regression model: it’s what’s “left
over” in y after accounting for the contribution of x.

For every two points. . . .

A natural question is: how do we fit the parameters β0 and β1

to the observed data? Historically, the standard approach, still in
widespread use today, is to use the method of least squares. This
involves choosing β0 and β1 so that the sum of squared residuals
(the ei’s) will be as small as possible. This is what we did to get the
equation yi = −6.2 + 7.9xi in Figure 2.1.

The method of least squares is one of those ideas that, once

www.fearlesscritic.com/austin
www.fearlesscritic.com/austin
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you’ve encountered it, seems beautifully simple, almost to the
point of being obvious. But it’s worth pausing to consider its his-
torical origins, for it was far from obvious to a large number of
very bright 18th-century scientists.

To see the issue, consider the following three simple data sets.
Each has only two observations, and therefore little controversy
about the best-fitting linear trend.
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For every two points, a line. If life were always this simple, there
would be no need for statistics.

But things are more complicated if we observe three points.

3 = β0 + 1β1

4 = β0 + 5β1

8 = β0 + 7β1

Two unknowns, three equations. There is no solution for the pa-
rameters β0 and β1 that satisfies all three equations—and therefore
no perfectly fitting linear trend exists. Seen graphically, at right, it
is clear that no line can pass through all three points.
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Abstracting a bit, the key issue here is the following: how are
we to combine inconsistent observations? Any two points are con-
sistent with a unique line. But three points usually won’t be, and
most interesting data sets have far more than three data points.

Therefore, if we want to fit a line to the data anyway, we must
allow the line to miss by a little bit for each (xi, yi) pair. We ex-
press these small misses mathematically, as follows:

3 = β0 + 1β1 + e1

4 = β0 + 5β1 + e2

8 = β0 + 7β1 + e3 .

The three little e’s are the residuals, or misses.
But now we’ve created a different predicament. Before we

added the ei’s to give us some wiggle room, there was no solution
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Figure 2.2: Three possible straight-
line fits, each involving an attempt
to distribute the “errors” among the
observations.

to our system of linear equations. Now we have three equations
and five unknowns: an intercept, a slope, and three residuals. This
system has infinitely many solutions. How are we to choose, for
example, among the three lines in Figure 2.2? When we change
the parameters of the line, we change the residuals, thereby redis-
tributing the errors among the different points. How can this be
done sensibly?

Believe it or not, scientists of the 1700’s struggled mightily with
this question. Many of the central scientific problems of this era
concerned the combination of astronomical or geophysical obser-
vations. Astronomy in particular was a hugely important subject
for the major naval powers of the day, since their ships all navi-
gated usings maps, the stars, the sun, and the moon. Indeed, until
the invention of a clock that would work on the deck of a ship
rolling to and fro with the ocean’s waves, the most practical way
for a ship’s navigator to establish his longitude was to use a lu-
nar table. This table charted the position of the moon against the
“fixed” heavens above, and could be used in a roundabout fashion
to compute longitude. These lunar tables were compiled by fitting
an equation to observations of the moon’s orbit.

The same problem of fitting astronomical orbits arose in a wide
variety of situations. Many proposals for actually fitting the equa-
tion to the data were floated, some by very eminent mathemati-
cians. Leonhard Euler, for example, proposed a method for fitting
lines to observations of Saturn and Jupiter that history largely
judges to be a failure.

In fact, some thinkers of this period disputed that it was even
a good idea to combine observations at all. Their reasoning was,
roughly, that the “bad” observations in your sample would corrupt
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the “good” ones, resulting in an inferior final answer. To borrow
the phrase of Stephen Stigler, an historian of statistics, the “decep-
tively simple concept” that combining observations would improve
accuracy, not compromise it, was very slow to catch on during the
eighteenth century.1 1 The History of Statistics, p. 15.

The method of least squares

No standard method for fitting straight lines to data emerged until
the early 1800’s, half a century after scientists first entertained
the idea of combining observations. What changed things was
the method of least squares, independently invented by two people.
Legendre was the first person to publish the method, in 1805,
although Gauss claimed to have been using it as early as 1794.

The term “method of least squares” is a direct translation of
Legendre’s phrase “méthode des moindres carrés.” The idea is
simple: choose the parameters of the regression line that minimize
∑n

i=1 e2
i , the sum of the squared residuals. As Legendre put it:

In most investigations where the object is to deduce the most
accurate possible results from observational measurements,
we are led to a system of equations of the form

E = a + bx + cy + f z + &c.,

in which a, b, c, f , &c. are known coefficients, varying from
one equation to the other, and x, y, z, &c. are unknown quan-
tities, to be determined by the condition that each value of E
is reduced either to zero, or to a very small quantity. . . .

Of all the principles that can be proposed for this purpose,
I think there is none more general, more exact, or easier to
apply, than that which we have used in this work; it consists
of making the sum of the squares of the errors a minimum. By
this method, a kind of equilibrium is established among the
errors which, since it prevents the extremes from dominating,
is appropriate for revealing the state of the system which most
nearly approaches the truth.2 2 Adrien-Marie Legendre (1805), Nou-

velles méthodes pour la détermination des
orbites des comètes. Translation p. 13,
Stigler’s A History of Statistics.

The utility of Legendre’s suggestion was immediately obvious to
his fellow scientists and mathematicians. Within two decades, least
squares became the dominant method throughout the European
scientific community.

Why was the principle adopted so quickly and comprehen-
sively? For one thing, it offered the attractiveness of a single best
answer, evaluated according to a specific, measurable criterion.
This gave the procedure the appearance of objectivity—especially
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compared with previous proposals, many of which essentially
amounted to: “muddle around with the residuals until you get an
acceptable balance of errors among the points in your sample.”

Moreover, unlike many previous proposals for combining ob-
servations, the least-squares criterion could actually be applied to
non-trivially large problems. One of the many advantages of the
least-squares idea is that it leads immediately from grand principle
to specific instructions on how to compute the estimate (β̂0, β̂1):

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)
∑n

i=1(xi − x̄)2 (2.2)

β̂0 = ȳ− β̂1 x̄ , (2.3)

where x̄ and ȳ are the sample means of the X and Y variables,
respectively. The line y = β̂0 + β̂1x is the best possible linear fit
to the data, in a squared-error sense. That is to say: among the
family of all possible straight-line fits to the data, this particular
line has the smallest sum of squared residuals. Deriving this so-
lution involves solving a simple mathematical problem involving
some calculus and matrix algebra—something that scientists of the
nineteenth century could do easily, via pen and paper.

In statistics, a little hat on top of some-
thing usually denotes a guess or an
estimate of the thing wearing the hat.

Goals of regression analysis

With modern computers, the estimation of linear regression mod-
els by least squares is now entirely automatic for all but the very
largest of data sets.3 It’s so ordinary, in fact, that the method is 3 By “very largest,” think: every search

that Google has every recorded, every
post in the history of Facebook, and so
forth. It’s still possible to fit regression
models to those data sets, but doing so
is far from automatic—and possessing
the expertise necessary to do so is a
large part of what makes the major Sil-
icon Valley companies so extraordinary
(and so valuable).

often abbreviated as OLS: ordinary least squares.
But don’t let the simplicity of the model-fitting step fool you:

regression modeling is a wonderfully rich and complex subject.
We’ll start by focusing on four kinds of stories one can tell with a
regression model. Each is useful for a different purpose.

Story 1: A regression model is a plug-in prediction machine.

One way to interpret a regression model is as is a function ŷ =

f (x) that maps inputs (x) to expected outputs (ŷ). When we plug
in the original x values in to the least-squares equation, we get
back the so-called fitted values, or model values, denoted ŷi:

ŷi = β̂0 + xi β̂1 . (2.4)
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Figure 2.3: Using a regression model
for plug-in prediction of the price of a
meal, assuming a food rating of 7.5.In this way, the regression model partitions each observed y value

into two pieces: yi = ŷi + ei, a fitted value plus a residual.
This is especially useful forecasting the response of a new case,

where we know the value of the predictor but not the response.
Specifically, if we see a new observation x? and want to predict
where the corresponding y? will be, we can simply plug in x? and
read off our guess for y? from the line: ŷ? = β̂0 + x? β̂1.

For example, if we know that a new restaurant earned a food
rating of 7.5, our best guess for the cost of the meal—knowing
nothing else about the restaurant—would be to use the linear
predictor: ŷ? = −6.2 + 7.9 · 7.5, or $53.05 per person. (See Figure
2.3). This, incidentally, is where the name regression comes from:
we expect that future y’s will “regress to the mean” specified by
the linear predictor.

Story 2: A regression model summarizes the trend in the data.

The linear predictor tells you how Y changes, on average, as a
function of X. In particular, the slope β1 tells you how the re-



38 data science

0 20 40 60 80 100

0
10

20
30

40
50

Y changes
slowly with X.

Y changes more
rapidly with X.

Figure 2.4: The slope of a regression
model summarizes how fast the Y
variable changes, as a function of X.sponse tends to change as a function of the predictor:

β1 =
∆Y
∆X

,

read “delta-Y over delta-X,” or “change in Y over change in X.”

Generally we use a capital letter when
referring generically to the predictor
or response variable, and a lower-case
letter when referring to a specific value
taken on by either one.For the line drawn in Figure 2.1, the slope is β1 = 7.9. On average,

then, one extra Fearless Critic food rating point (∆X) is associated
with an average increase of $7.90 (∆Y) in the price of a meal. The
slope is always measured in units of Y per units of X—in this case,
dollars per rating point. It is often called the coefficient of X.

To interpret the intercept, try plugging in xi = 0 into the re-
gression model and notice what you get for the linear predictor:
β0 + β1 · 0 = β0. This tells you that the intercept β0 is what we’d
expect from the response if the predictor were exactly 0.

Sometimes the intercept is easily interpretable, and sometimes
it isn’t. Take the trend line in Figure 2.1, where the intercept is
β0 = −6.2. This implies that a restaurant with a Fearless Critic
food rating of x = 0 would charge, on average, y = −$6.20 for the
privilege of serving you a meal.

Perhaps the diners at such an appalling restaurant would feel
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this is fair value. But a negative price is obvious nonsense. Plug-
ging in x = 0 to the price/rating model and trying to interpret the
result is a good example of why extrapolation—using a regression
model to forecast far outside the bounds of past experience—can
give silly results.

Story 3: A regression model takes the X-ness out of Y.

We’ve seen how a regression model splits up every observation in
the sample into two pieces, a fitted value (β0 + β1xi) and a residual
(ei):

Observed y value = (Fitted value) + (Residual) , (2.5)

or equivalently,

Residual = (Observed y value)− (Fitted value) .

The residuals from a regression model are sometimes called
“errors.” This is especially true in experimental science, where
measurements of some Y variable will be taken at different val-
ues of the X variable (called design points), and where noisy
measurement instruments can introduce random errors into the
observations.

But in many cases this interpretation of a residual as an error
can be misleading. A regression model can still give a nonzero
residual, even if there is no mistake in the measurement of the Y
variable. It’s often far more illuminating to think of the residual as
the part of the Y variable that it is left unpredicted by X.

In Figure 2.1, for example, the positive slope of the line says:
yes, people generally pay more for tastier food. The residuals say:
not always. There are many other factors affecting the price of a
restaurant meal in Austin: location, service, decor, drinks, the like-
lihood that Matthew McConaughey will be eating overpriced tacos
in the next booth, and so forth. Our simple model of price versus
food rating collapses all of these other factors into the residuals.

A good way of summarizing this is that the regression model
“takes the X-ness out of Y,” leaving what remains in the residual
ei:

yi︸︷︷︸
Observed y value

= β0 + β1xi︸ ︷︷ ︸
Predictable by x

+ ei .︸︷︷︸
Unpredictable by x

This is easily seen in our example by plotting the residual price
(ei) against food rating (xi), side by side with the original data,
as in Figure 2.5. In the right panel, there is no evident correlation
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Figure 2.5: Left: the original data on
price versus food rating. Right: the
residuals from the least squares fit on
the left. The residual for Franklin BBQ
is the length of the dotted vertical line:
ei = −$53.85.

between food rating and the residuals. This should always be true:
a good regression model should take the X-ness out of Y, so that
the residuals look independent of the predictor. If they don’t, then
the model hasn’t done its job. (Always plot your residuals to check
this.)

You’ve just seen your first example of statistical adjustment. No-
tice the red dot sitting in the lower right of Figure 2.5, with a low
price and a high food rating? This isn’t the least expensive restau-
rant near downtown Austin in an absolute sense. But it is the least
expensive after we adjust for food rating. To do this, we simply sub-
tract off the fitted value from the observed value of y, leaving the
residual—which, you’ll recall, captures what’s over in the response
(price) after the predictor (food score) has been taken into account.
The restaurant in question has a food rating of 9.5, good for Fear-
less Critic’s third best score in the entire city. For such delicious
food, you would expect to pay ŷ? = −6.2 + 7.9 · 9.5, or $68.85
per person. In reality, the price of a meal at this restaurant is a
mere $15, or ei = −$53.85 less than expected. That’s the largest, in
absolute value, of all the negative residuals.

This restaurant is Franklin Barbecue, declared “Best Barbecue
in America” by Bon Appétit magazine, and undoubtedly the most
delicious residual in the city:

Go to Austin and queue up at Franklin Barbecue by 10:30 a.m.
When you get to the counter, Aaron Franklin will be waiting,
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Figure 2.6: A scatter plot of the CDC’s
measure of flu activity versus Google
search activity for the phrase “how
long does flu last” (z score of search
frequency). To the right of the scatter
plot, we see two dot plots, both on the
same scale: (1) the original deviations
from the sample mean, yi − ȳ; and
(2) the residuals from the regresson
equation, yi − ŷi .

knife in hand, ready to slice up his brisket. (Order the fatty
end.) Grab a table, a few beers, and lots of napkins and dig
in. Take a bite, and don’t tell me you’re not convinced you’ve
reached the BBQ promised land.

But visitors take note: this article (“A Day in the Life of a BBQ
Genius,” by food critic Andrew Knowlton) is from July of 2011,
and its advice is dated. These days, queueing up at 10:30 would
have you last in line!

Story 4: A regression model quantifies the information in a predictor.

The idea behind the Flu Prediction Project, run jointly by IBM
Watson and the University of Osnabrück in Germany, is simple.4 4 http://www.flu-prediction.com

Researchers combine social-media and internet-search data, to-
gether with official data provided by government authorities, like
the Centers for Disease Control (CDC) in the United States, to
yield accurate real-time predictions about the spread of seasonal
influenza. This kind of forecasting model allows public-health
authorities to allocate resources (like antivirals and flu vaccines)
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using the most up-to-date information possible. After all, the of-
ficial government data can usually tell you what flu activity was
like two weeks ago. Social-media and internet-search data, if used
correctly, have the potential to tell what you it’s like right now.

To give you a sense of how strong the predictive signal from
internet-search data can be, examine Figure 2.6, focusing first on
the scatter plot in the left panel. Here each dot corresponds to
a day. On the x-axis is a measure of Google search activity for
the term “how long does flu last,” where higher numbers mean
that more people are searching for that term on that day.5 On 5 Specifically, it’s a z score: how many

standard deviations about the mean
was the search frequency on that day
for that particular term.

the y axis, we see a measure of actual flu activity on that day,
constructed from data provided by the CDC.

The search activity on a given day strongly predicts actual flu
transmission, which makes sense: one of the first things that many
people do when they fall ill is to commiserate with a search engine
about the depth and duration of their suffering. But just how
much information about flu does the search activity for this single
term—“how long does flu last”–convey?

In principle, there are many ways of measuring this information
content. In fact, you’ve already met one way to do so: by com-
puting the correlation coefficient between the two variables. Our
regression model provides another way, because it allows us to
compare our predictions of flu activity both with and without the
x variable.

• Without knowing the predictor variable, our best guess for
the outcome is just the sample mean, ȳ, and the prediction
error for each case is yi − ȳ. You can think of the sample
mean as our “baseline” prediction; it is obviously a pretty
simple baseline.

• With the predictor variable, our best guess is given by the
regression model, ŷi = β0 + β1xi, and the prediction error for
each case is the residual, yi − ŷi.

In each case, we would expect these errors to be distributed
around zero. The question is: how much smaller do the errors
of the regression model tend to be, compared with the errors we
make by predicting the outcome using the sample mean alone?
If our predictions errors get a lot smaller with the x variable than
without it, then we’ll know that this variable conveys a lot of infor-
mation about response.

To answer this question, return to Figure 2.6. To the right of
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Least squares then and now: an historical aside

The Ordnance Survey is the governmental body in the United Kingdom charged with mapping and sur-
veying the British Isles. “Ordnance” is a curious name for a map-making body, but it has its roots in the
military campaigns of the 1700’s. The name just stuck, despite the fact that these days, most of the folks
that use Ordnance Survey maps are probably hikers.

In the days before satellites and computers, map-making was a grueling job, both on the soles of your
feet and on the pads of your fingers. Cartographers basically walked and took notes, and walked and took
notes, ad infinitum. In the 1819 survey, for example, the lead cartographer, Major Thomas Colby, endured
a 22-day stretch where he walked 586 miles—that’s 28 miles per day, all in the name of precision cartogra-
phy. Of course, that was just the walking. Then the surveyors would have to go back home and crunch the
numbers that allowed them to calculate a consistent set of elevations, so that they could correctly specify
the contours on their maps.

They did the number-crunching, moreover, by hand. This is a task that would make most of us weep at
the drudgery. In the 1858 survey, for example, the main effort involved reducing an enormous mass of
elevation data to a system of 1554 linear equations involving 920 unknown variables, which the Ord-
nance Survey mathematicians solved using the principle of least squares. To crunch their numbers, they
hired two teams of dozens of human computers each, and had them work in duplicate to check each other’s
mistakes. It took them two and a half years to reach a solution.

A cheap laptop computer bought today takes a few seconds to solve the same problem.
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Figure 2.7: Left: a scatterplot of
monthly gas consumption (measured
in dollars) versus average monthly
temperature at a single-family home
in Minnesota, together with a linear
regression model fit by ordinary least
squares. Right: a plot of the residuals
from the linear model versus tempera-
ture, showing the deficits of the straight
line fit. Data source: Daniel T. Kaplan,
Statistical Modeling: A Fresh Approach,
2009.

the scatter plot you see two histograms: (1) the original deviations
yi − ȳ, and (2) the residuals from the regresson model. You’ll
notice that some of the original variation has been absorbed by
the regression model: the residuals are less variable (standard
deviation 1.5) than the original y points (standard deviation 2.7).

This is how a regression model measures the information con-
tent of a predictor: information means reduction in prediction
error for the response. The bigger this reduction in prediction
uncertainty, the more informative the predictor.

Beyond straight lines

Up to this point, we’ve talked about fitting straight lines using
the principle of least squares. For many data sets, however, a lin-
ear regression model doesn’t provide an adequate description of
what’s going on. Consider, for example, the data on monthly gas
consumption for a single-family home in Minnesota shown in the
left panel Figure 2.7. As the temperature rises, the residents of the
house use less gas for heating. But this trend is not well described
using a straight line fit by least squares, in this case

Gas Bill = $226− 3 · Temperature + Residual .

For example, consumption levels off when the temperature rises
above 65 degrees F, but the straight line keeps going down.

The inadequacy of the linear model is revealed by the residual
plot in the right panel. Here, the residuals ei from the linear fit in
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the left panel are plotted versus temperature. Remember, these
residuals should be unrelated with the predictor if our regression
model has done its job right. But here, this is clearly false:

• At very cold temperatures (10-20 degrees), the residuals are
almost all positive, suggesting that the regression model
made predictions that were systematically too low.

• At cool temperatures (40-60 degrees), the residuals are almost
all negative, suggesting that the regression model made
predictions that were systematically too high.

• At nice temperatures (65-80 degrees), the residuals are al-
most all positive, suggesting that the regression model made
predictions that were systematically too low yet again.

Thus there is still information left in the temperature variable that
can be exploited to do a better job at predicting the gas bill.

In such cases, we need to consider nonlinear regression models.
In this section, we’ll look at two restricted—but still very useful—
families of nonlinear models that can still be fit easily using least
squares:

(1) polynomial models (like quadratic or cubic equations); and

(2) models involving a simple mathematical transformation of the
predictor, the response, or both.

Beyond these two families, there is a
much wider class of nonlinear models
that can still be fit by least squares, but
not easily. (That is, Legendre’s simple
computational method won’t work, and
we need something fancier.) These are
often called nonparametric regression
models, and they are the subject of a
more advanced course.

Polynomial regression models

A polynomial is a mathematical function defined by sum of mul-
tiple terms, each containing a different power of the same variable
(here, as elsewhere, denoted x). A linear function is a special case
of a polynomial that only has the first power of x: y = β0 + β1x.

But we can fit other polynomials by least squares, too. For ex-
ample, the left panel of Figure 2.8 shows the least-squares fit of a
quadratic equation (another name for a second-degree polynomial)
to the gas-consumption data set:

Gas Bill = $289− 6.4 · Temp + 0.03 · Temp2 + Residual .

The quadratic model fits noticeably better than the straight line. In
particular, it captures the leveling-off in gas consumption at high
temperatures that was missed by the linear model.
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Figure 2.8: Left: the fit of a quadratic
model (2nd-degree polynomial) esti-
mated by least squares. Right: the fit of
a 15th-degree polynomial. The model
on the left provides an intuitively rea-
sonable description of the underlying
relationship, while the model on the
right is a clear example of over-fitting.

Over-fitting. If the quadratic model (a second-order polynomial)
fits better than the straight line (a first-order polynomial), why
not try a third-, fourth-, or higher-order polynomial to get an even
better fit? After all, we can fit polynomial models of any degree by
least squares, estimating equations of the form

ŷ = β0 + β1x + β2x2 + · · ·+ βkxK ,

for an arbitrary choice of K (the degree of the polynomial).
To want to fit the data as well as possible is an understand-

able impulse. But for most data sets, if we venture beyond K = 2
(quadratic) or K = 3 (cubic), we rapidly get into dangerous over-
fitting territory. Over-fitting occurs when a regression model starts
to memorize the random noise in the data set, rather than describe
the underlying relationship between predictor and response. We
see a clear example of over-fitting in the right panel of 2.8, which
shows the result of using least-squares to estimate a 15th-degree
polynomial for gas bill versus temperature. The fitted curve ex-
aggerates minor dips and rises in the data, leading to an absurdly
complex function. There’s no reason for us to think that gas con-
sumption responds to temperature in the way implied by the
green curve on the right of Figure 2.8. For example, why would
consumption rise systematically between 10 and 15 degrees, but
then drop again between 15 and 20 degrees?

In regression modeling, we want to build models that are only
as complex as they must be in order to describe the underlying
relationship between predictor and response. But how do we
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Figure 2.9: Extrapolation in polynomial
regression models.

know reliably when we’ve crossed this line from “fitting well” into
over-fitting?

We’re still a few chapters away from being able to provide a
solid answer to that question. For now, it’s fine to let your intu-
ition and your eyes be your guide:

• Does the fitted equation look implausibly wiggly?
• Is there a sound reason, grounded in knowledge of the phe-

nomenon being measured, to believe in the complexity that
your model postulates?

With apologies to Potter Stewart: when it comes to overfitting,
you’ll often know it when you see it. This is one of many reasons
why it is always a good idea to plot your data.

Extrapolation. Although the quadratic model fits the data well, its
predictive abilities will deterioriate as we move above 80 degees
(i.e. as we use the model to extrapolate further and further beyond
the range of past experience). As we can see in the left panel of
Figure 2.9, that’s because the fitted curve is a parabola: it turn
upwards around 85 degrees, counterintuitively suggesting that gas
bills would eventually rise with temperature.

This behavior is magnified dramatically with higher-order poly-
nomials, which can behave in unpredictable ways beyond the
endpoints of your data. The right panel of Figure 2.9 shows this
clearly: notice that the predictions of the 15th-degree polynomial
drop off a cliff almost immediately beyond the range of the avail-
able data, at 79 degrees. You’ll sometimes hear this phenomenon—

https://en.wikipedia.org/wiki/I_know_it_when_I_see_it
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Figure 2.10: Cases of Ebola over time in
West Africa, 2014. Compiled from CDC
reports by Francis Smart, as described
here.

ridiculous predictions beyond the endpoints of the data—referred
to as an “endpoint artifact.”

This example offers a cautionary tale: never extrapolate with a
polynomial regression model, unless you really know what you’re
doing.

Exponential growth and decay

Beginning in March 2014, West Africa experienced the largest out-
break of the Ebola virus in history. Guinea, Liberia, Niger, Sierra
Leone, and Senegal were all hit hard by the epidemic. Figure 2.10

shows the number of laboratory-confirmed cases of Ebola in these
five countries over time, beginning on March 25.

If we wanted to fit a model to describe how the number of
Ebola infections grew over time, we might be tempted to fit a
polynomial function (since a linear model clearly won’t work well
here). However, basic biology tells us that the transmission rate of
a disease through a population is reasonably well described by an
exponential growth model: 1 infection leads to 2, which lead to 4,
which lead to 8, to 16, and so on. The equation for an exponential-
growth model is

y = α · eβt , (2.6)

where y is the expected number of cases and t is the number of
time intervals (e.g. weeks or days) since the start of the outbreak.

It turns out that we can use least squares to fit an exponential
growth model of this form, using a new trick: take the logarithm of
the response variable and fit a linear model to this new transformed
variable. We can see why this works if we take the logarithm of

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html
http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/index.html
http://www.r-bloggers.com/1-2-millions-deaths-by-ebola-projected-within-six-months/
http://www.r-bloggers.com/1-2-millions-deaths-by-ebola-projected-within-six-months/
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Figure 2.11: An exponential-growth
model fit to the Ebola data by ordinary
least squares, where the y variable is
shown on the log scale (left) and on the
original scale (right).

y in the equation for exponential growth (labeled 2.6, above). To
preserve equality, if we take the log of the left-hand side, we also
have to take the log of the right-hand side:

log y = log
(

α · eβ1t
)

= log α + βt .

The second equation says that the log of y is a linear function of
the time variable, t, with intercept β0 = log α and slope β1.

Thus to fit the exponential growth model for any response
variable y, we need to follow two steps:

(1) Define a new variable z = log y by taking the logarithm
of the original response variable.

(2) Fit a linear model for the transformed variable z versus
the original predictor, using ordinary least squares.

Figure 2.11 shows the result of following these two steps for
the Ebola data. The left panel shows the straight-line fit on the log
scale:

log Cases = 4.54 + 0.021 ·Days .

The right panel shows the corresponding exponential-growth
curve on the original scale:

Cases = 93.5 · e0.021·Days .
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The leading constant is calculated from the intercept on the log
scale: 93.5 ≈ e4.54. From Figure 2.11, we can see that the exponential-
growth model fits adequately, although imperfectly: the rate of
growth seems to be accelerating at the right of the picture, and the
upward trajectory is visibly nonlinear on the log scale. (Remem-
ber: all models are wrong, but some models are useful.)

An exponential model with a negative slope β1 on the log scale
is called an exponential decay model. Exponential decay is a good
model for, among other things, the decay of a radioactive isotope.

Interpreting the coefficient in an exponential model. To interpret the
coefficient in an exponential growth model, we will use it to calcu-
late the doubling time—that is, how many time steps it takes for
the response variable (here, Ebola cases) to double.

In terms of our estimated model, the number of cases doubles
between days t1 and t2 whenever

αeβ1t2

αeβ1t1
= 2 ,

so that the number of cases on day t2 (in the numerator) is pre-
cisely twice the number of cases on day t1, in the denominator.
If we simplify this equation using the basic rules of algebra for
exponentials, we find that the number of days that have elapsed
between t1 and t2 is

t2 − t1 =
log 2

β1
.

This is our doubling time. For Ebola in West Africa, the number of
cases doubled roughly every

log 2
0.021

≈ 32

days during the spring and early summer of 2014.
In an exponential decay model (where β1 < 0), a similar calcula-

tion would tell you the half life, not the doubling time.6 6 Instead, solve the equation

αeβ1t2

αeβ1t1
= 1/2

for the difference t2 − t1.
Double log transformations

In some cases, it may be best to take the log of both the predictor
and the response, and to work on this doubly transformed scale.
For example, in the upper left panel of Figure 2.12, we see a scatter
plot of brain weight (in grams) versus body weight (in kilos) for
62 different mammalian species, ranging from the lesser short-
tailed shrew (weight: 10 grams) to the African elephant (weight:

http://www.math.com/school/subject2/lessons/S2U2L2DP.html
http://www.math.com/school/subject2/lessons/S2U2L2DP.html
https://en.wikipedia.org/wiki/Half-life
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6000+ kilos). You can see that most species are scrunched up in a
small box at the lower left of the plot. This happens because the
observations span many orders of magnitude, and most are small
in absolute terms.

But if we take the log of both body weight and brain weight,
as in the top-right panel of Figure 2.12, the picture changes con-
siderably. Notice that, in each of the top two panels, the red box
encloses the same set of points. On the right, however, the double
log transformation has stretched the box out in both dimensions,
allowing us to see the large number of data points that, on the
left, were all trying to occupy the same space. Meanwhile, the two
points outside the box (the African and Asian elephants) have
been forced to cede some real estate to the rest of Mammalia.

This emphasizes the taking the log is an “unsquishing” oper-
ator. To see this explicitly, look at the histograms in the second
and third row of panels in Figure 2.12. Whenever the histogram
of a variable looks highly skewed right, as on the left, a log trans-
formation is worth considering. It will yield a much more nicely
spread-out distribution of points, as on the right.

Power laws. It turns out that when we take the log of both vari-
ables, we are actually fitting a power law for the relationship be-
tween y and x. The equation of a power law is

y = α · xβ1

for some choices of α and β. This is a very common model for
data sets that span many orders of magnitude (like the body/brain
weight data). To see the connection with the double log transfor-
mation, simply take the logarithm of both sides of the power law:

log y = log
(

α · xβ1
)

= log α + log xβ1

= log α + β1 log x .

Therefore, if y and x follow a power law, then log y and log x
follow a linear relationship with intercept log α and slope β1. This
implies that we can fit the parameters of the power law by ap-
plying the double log transformation and using ordinary least
squares. For our mammalian brain weight data, applying this
recipe yields the fitted equation

log brain = 2.13 + 0.75 · log body ,
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Figure 2.12: Brain weight versus body
weight for 62 mammalian species, both
on the original scale and the log scale.
Notice how the log transformation
“unsquishes” the points.
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Figure 2.13: A straight-line fit to the
mammalian brain weight data after a
double log transformation.or expressed as a power law on the original scale,

brain = 8.4 · body0.75 .

The residuals in a power-law model. As we’ve just seen, we can fit
power laws using ordinary least squares after a log transformation
of both the predictor and response. In introducing this idea, we
ignored the residuals and focused only on the part of the model
that describes the systematic relationship between y and x. If we
keep track of these residuals a bit more carefully, we see that the
model we’re fitting for the ith response variable is this:

log yi = log α + β1 log xi + ei , (2.7)

where ei is the amount by which the fitted line misses log yi. We
suppressed these residuals before the lighten the algebra, but now
we’ll pay them a bit more attention.

Equation 2.7 says that the residuals affect the model in an ad-
ditive way on the log scale. But if we exponentiate both sides,
we find that they affect the model in a multiplicative way on the
original scale:

exp(log yi) = exp(log α) · exp(β1 log x) exp(ei)

yi = αxβ1 exp(ei) .

Therefore, in a power low, the exponentiated residuals describe
the percentage error made by the model on the original scale. Let’s
work through the calculations for two examples:
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• If ei = 0.2 on the log–log scale, then the actual response is
exp(0.2) ≈ 1.22 times the value predicted by the model. That
is, our model underestimates this particular yi by 22%.

• If ei = −0.1 on the log–log scale, then the actual response is
exp(−0.1) ≈ 0.9 times the value predicted by the model. That
is, our model overestimates this particular yi by 10%.

The key thing to realize here is that the absolute magnitude of
the error will therefore depend on whether the y variable itself is
large or small. This kind of multiplicative error structure makes
perfect sense for our body–brain weight data: a 10% error for a
lesser short-trailed shrew will have us off by a gram or two, while
a 10% error for an elephant will have us off by 60 kilos or more.
Bigger critters mean bigger errors—but only in an absolute sense,
and not if we measure error relative to body weight.

Interpreting the slope under a double log transformation. To correctly
interpret the slope β1 under a double log transformation, we need
a little bit of calculus. The power law that we want to fit is of the
form y = αxβ1 . If we take the derivative of this expression, we get

dy
dx

= β1αxβ1−1 .

We can rewrite this as

dy
dx

=
β1αxβ1

x

= β1
y
x

.

If we solve this expression for β1, we get

β1 =
dy/y
dx/x

. (2.8)

Since the dy in the derivative means “change in y”, the numera-
tor is the rate at which the y variable changes, as a fraction of its
value. Similarly, since dx means “change in x”, the denominator is
the rate at which the x variable changes, as a fraction of its value.

Putting this all together, we find that β1 measures the ratio of
percentage change in y to percentage change in x. In our the mam-
malian brain-weight data, the least-squares estimate of the slope
on a log-log scale was β̂1 = 0.75. This means that, among mam-
mals, a 100% change (i.e. a doubling) in body weight is associated
with a 75% expected change in brain weight. The bigger you are, it



fitting equations to data 55

would seem, the smaller your brain gets—at least relatively speak-
ing.

The coefficient β1 in a power law is often called an elasticity
parameter, especially in economics, where it is used to quantify
the responsiveness of consumer demand to changes in the price of
a good or service. The underlying model for consumer behavior
that’s often postulated is that

Q = αPβ1 ,

where Q is the quantity demanded by consumers, P is the price,
and β1 < 0. Economists would call β1 the price elasticity of de-
mand,7 which may be a familiar concept from a microeconomics 7 They actually define elasticity as the

ratio in Equation 2.8, but as we’ve seen,
this is mathematically equivalent to the
regression coefficient you get when you
fit the x–y relationship using a power
law.

course.

https://en.wikipedia.org/wiki/Price_elasticity_of_demand
https://en.wikipedia.org/wiki/Price_elasticity_of_demand




3
Predictable and unpredictable variation

Quantifying uncertainty in a prediction

There are many things we can look forward to as we age—for
example, richer relationships, improved confidence, better self-
knowledge, and the right to go to bed early without being judged.

Unfortunately, improved kidney function isn’t one of them. The
following plot shows a sample of 78 patients from an ordinary
doctor’s office. The x-axis shows the patient’s age, while the y-axis
shows the patient’s creatinine-clearance rate in mL/min, which is
a common measure of kidney function (higher is better):1 1 According to the National Institutes of

Health, “The creatinine clearance test
helps provide information about how
well the kidneys are working. The test
compares the creatinine level in urine
with the creatinine level in blood. . . .
Creatinine is removed, or cleared, from
the body entirely by the kidneys. If
kidney function is abnormal, creatinine
level increases in the blood because
less creatinine is released through the
urine.”
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e A 54-year-old

Suppose you’re the doctor running this clinic, and a 54-year old
man walks through the door. He tests at 126 mL/min, which is
10 points above the prediction of the regression line (blue dot on
the line). Is the man’s score too high, or is it within the range of
normal variation from the line?
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This question is fundamentally about prediction uncertainty.
Anytime we use a statistical model to make a prediction, some
version of this question comes up. For example, among pickup
trucks for sale on Craigslist, those with higher odometer readings
tend to have lower asking prices:
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Now imagine you have your eye on a pickup truck with 80,000

miles on it. The least squares fit says such that the expected price
for such a truck is about $8,700. If the owner is asking $11,000, is
this reasonable, or drastically out of line with the market?

Here’s another example. Mammals more keenly in danger of
predation tend to dream fewer hours.

Predation Index (5 = most in danger)
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Figure 3.1: Dreaming hours per night
versus danger of predation for 50

mammalian species. In this and in
Figure 3.2, the blue squares show the
group-wise means, while the dotted
green line shows the grand mean for
the entire data set.

But there is still residual variation that practically begs for a Zen
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proverb. Why does the water rat dream at length? Why does the
wolverine not?

Finally, the people of Raleigh, NC tend to use less electricity
in the milder months of autumn and spring than in the height of
winter or summer—but not uniformly. Many spring days see more
power usage than average; many summer days see less. What is
the normal range of electricity consumption for a day in August,
the hottest month of the year?
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Figure 3.2: Daily peak demand for
electricity versus month of the year in
Raleigh, NC from 2006–2009.

In all of these cases, one must remember that the fitted values
from a statistical model are generalizations about a typical case,
given the information in the predictor. But no generalization holds
for all cases. This is why we explicitly write models as

Observed y value = Fitted value + Residual .

It is common to view a statistical model as nothing more than
a recipe for calculating the fitted values, and to think that the
residuals are just the errors made by this model. But we’ll have a
richer picture if instead we view the residuals as part of the model.
If you’ve ignored the variation in the residuals, then you really
haven’t specified a complete forecast.

An important distinction here is that of a point estimate, or single
best guess, versus an interval estimate, or a range of likely values.
Fitted values are point estimates. Point estimates are useful, but
interval estimates are much better. After all, variation from the
average, far from being an “error,” is a normal part of life.
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Figure 3.3: Prediction intervals for
pickup-truck prices on Craigslist.
Shaded blue area = 1 residual standard
deviation to either side of the fitted
line (red); shaded grey = 2 standard
deviations. The right panel shows a
histogram of the residuals, along with
the width of the 1se (blue) and 2se
(grey) envelopes.

Prediction intervals

The key question we must answer to quantify our prediction
uncertainty is: “How much does a typical case vary from the pre-
diction of the regression model?” We have a lot of ways to answer
this question (box plots, histograms, dot plots, and so forth). The
most common way is to calculate the residual standard deviation:

se =

√
1

n− p

n

∑
i=1

(yi − ŷi)2 ,

The residual standard deviation is also
called the residual standard error. The
formula for the residual standard devi-
ation is almost identical to the formula
for the sample standard deviation of
the residuals. The minor difference
is the divisor: n − p instead of n − 1.
The reason is that the sample standard
deviation centers yi by the sample
mean, which involves computing 1

extra number (ȳ) from the data. The
residual standard deviation centers yi
by the OLS fitted values, which involves
computing p extra numbers (β̂0 and β̂1
in the case of a straight-line fit).

where p is the number of free parameters in the model (e.g. two
for a straight-line fit: the slope and the intercept). This quantity
describes how much a typical case deviates from the fitted line,
just like the ordinary standard deviation tells us how much a
typical case deviates from sample mean ȳ (page 15).

To see how the residual standard deviation se can be used to
quantify prediction uncertainty, let’s take another look at the data
set of pickup trucks advertised on Craigslist. In Figure 3.3, the
red line is the least-squares fit: Y = 17054− 0.105 x. The residual
standard deviation is $3,971, compared to the original standard
deviation of $5,584. That is, a typical truck deviates from the sam-
ple mean ȳ by about $5,584, and from the least-squares line by
about $3,971. Knowledge of the truck’s mileage has improved our
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predictive accuracy by about $5584− $3971 = $1613, but there is
still a lot of uncertainty. The two shaded strips in Figure 3.3 depict
this uncertainty visually. The blue extends to 1 residual standard
deviation (line ± $3,971) on either side of the line, while the grey
strip extends to 2 residual standard deviations (line ± $7,942).

The key idea of a prediction interval is that these grey strips can
be used to provide an interval estimate for forecasting the price
of a future truck—that is, one not in our original data set. For our
hypothetical pickup truck with 80,000 miles, the point estimate
for the expected price (from the least-squares line) is $8,672. But if
we go out one residual standard deviation, the interval estimate is
$8,672 ± $3,971, or (4701, 12643). You can see where the wide of
these one- and two-standard-deviation envelopes comes from, in
the histogram in the right panel of Figure 3.3.

How accurate is the interval estimate? A simple way to quantify
this is just to count the number of cases that fall within the one-
standard deviation band to either side of the line, as a fraction of
the total number of cases. Since the medium grey strip,

y ∈ 17054− 0.105 · x± 3971 ,

captures 27 out of 37 total cases, it therefore constitutes a family
of prediction intervals at a coverage level of 73% (27/37). We call it a
family of intervals, because there is actually one such prediction
interval for every possible value of x. At x = 80000, the interval is
(4701, 12643); at x = 40,000, the interval is (8892, 16834).

Here the notation y ∈ c ± h means
that y (the response) is in the interval
centered at c that extends h units to
either side. Thus h is the half-width
of the interval. The sign ∈ is concise
mathematical notation for “is in.”

To summarize, forming a prediction interval requires two steps:
constructing the interval, and quantifying its accuracy. In a simple
linear regression model, the interval itself takes the form

y ∈ β̂0 + β̂1x± k · se ,

or more concisely, y ∈ ŷ ± k · se. Here se is the residual standard
deviation, and k is a chosen multiple that characterizes the width
of the intervals. There is a clear trade-off here: larger choices of k
mean wider intervals, which mean more uncertainty, but greater
coverage. Typical values for k are 1 or 2. To quantify the accuracy
of the interval, we look at its coverage: that is, what fraction of
examples in our original data set are contained within their corre-
sponding interval.

Most good statistical software makes it easy to calculate pre-
diction intervals. In R, for example, the predict function allows
you to specify a given coverage level (e.g. 95%) and will output the
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lower and upper bounds of a prediction interval at that specified
coverage.

Standardized residuals. Return to the question we posed on the
beginning of the chapter. You’re the doctor at a clinic, and a 54-
year old man has score of 126 mL/min for his creatinine clearance
test. Is the man’s score too high, or is it within the range of normal
variation from the line?

We can answer this question by calculating a standardized resid-
ual, which is just a z-score based on dividing the residual by the
residual standard deviation:

z =
yi − ŷi

se
=

ei
se

.

In this example, yi = 126, ŷi = 116, and the residual standard devi-
ation is se = 7.2. Therefore the man’s z-score is (126− 116)/7.2, or
about 1.4 standard deviations above normal. This is on the higher
side, but within the range of typical values seen in the clinic.

A caveat. The technique we’ve learned for forming prediction
intervals is pretty useful, but it’s not perfect. That’s because it
ignores uncertainty about the parameters of the model itself, and
only accounts for uncertainty about residuals, assuming that the
fitted model is true. (That is, we’re ignoring the fact that we might
have been a bit off in our estimates of the slope and intercept, due
to sampling variability.) As a result, these prediction intervals
actually understate the total amount of uncertainty that we’d like
to incorporate into our interval estimate. We’ll soon learn how to
quantify these additional forms of uncertainty. But imperfections
aside, even these slightly naïve prediction intervals that don’t
account for parameter uncertainty are much better than a point
estimate.

Partitioning sums of squares

When we introduced the concept of the sample standard devia-
tion, we asked the question: what’s so great about sums of squares
for measuring variation? The answer is: because linear statistical
models partition the total sum of squares into predictable and unpre-
dictable components. This isn’t true of any other simple measure
of variation. Sums of squares are special.
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Figure 3.4: Dreaming hours by species,
along with the grand mean. For refer-
ence, the colors denote the predation
index, ordered from left to right in
increasing order of danger (1–5). The
vertical dotted lines show the devia-
tions from the grand mean: yi − ȳ.

Let’s return to those grand and group means for the mam-
malian sleeping-pattern data. We will use sums of squares to
measure three quantities: the total variation in dreaming hours;
the variation that can be predicted using the predation index; and
unpredictable variation that remains “in the wild.”

In Figure 3.4, we see the observed y value (dreaming hours per
night) plotted for every species in the data set. The horizontal
black line shows the grand mean, ȳ = 1.97 hours. The dotted
vertical lines show the deviations between the grand mean and the
actual y values, yi − ȳ.

To account for the information in the predictor, we fit the model
“dreaming hours ∼ predation index,” computing a different mean
for each group:

yi︸︷︷︸
Observed value

= ŷi︸︷︷︸
Group mean

+ ei︸︷︷︸
Residual

.

There are three quantities to keep track of here:

• The observed values, yi.
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Figure 3.5: Dreaming hours by species,
along with the group means stratified
by predation index. The vertical dotted
lines show the residuals from the
group-wise model “Dreaming hours ∼
predation index.”

• The grand mean, ȳ.

• The fitted values, ŷi, which are just the group means cor-
responding to each observation. These are shown by the
colored horizontal lines in Figure 3.5 and again as diamonds
in Figure 3.6. For example, cats and foxes in group 1 (least
danger, at the left in dark blue) both have fitted values of
3.14; goats and ground squirrels in group 5 (most danger, at
the right in bright red) both have fitted values of 0.68. No-
tice that the fitted values also have a sample mean of ȳ: the
average fitted value is the average observation.

There are also three important relationships among yi, ŷi, and
ȳ to keep track of. We said we’d measure variation using sums of
squares, so let’s plunge ahead.

This equation says that the number
102.1 comes from summing all the
squared deviations in the data set—that
is, (3.9− ȳ)2 + (3.6− ȳ)2 + · · ·+ (0.6−
ȳ)2 = 102.1.

• The total variation, or the sum of squared deviations from
the mean ȳ. This measures the variability in the original data:

TV =
n

∑
i=1

(yi − ȳ)2 = 102.1 .
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Figure 3.6: Dreaming hours by species
(in grey), along with the fitted values
(colored diamonds) from the group-
wise model using predation index as a
predictor. The vertical lines depict the
differences ŷi − ȳ.

• The predictable variation, or the sum squared differences
between the fitted values and the grand mean. This measures
the variability described by the model:

PV =
n

∑
i=1

(ŷi − ȳ)2 = 36.4 .

• The unpredictable variation, or the sum of squared residuals
from the group-wise model. This is the variation left over in
the observed values after accounting for group membership:

UV =
n

∑
i=1

(yi − ŷi)
2 =

n

∑
i=1

e2
i = 65.7 .

What’s special about these numbers? Well, notice that

102.1 = 36.4 + 65.7 ,

so that TV = PV + UV. The model has cleanly partitioned the orig-
inal sum of squares in two components: one predicted by the
model, and one not.
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What if we measured variation using sums of absolute values
instead? Let’s try it and see:

n

∑
i=1
|yi − ȳ| = 53.0

n

∑
i=1
|ŷi − ȳ| = 33.7

n

∑
i=1
|yi − ŷi| = 42.5 .

Clearly 53.0 6= 33.7 + 42.5. If this had been how we’d defined TV,
PV, and UV, we wouldn’t have such a clean “partitioning effect”
like the kind we found for sums of squares.

Is this partition effect a coincidence, or a meaningful generaliza-
tion? To get further insight, let’s try the same calculations on the
peak-demand data set from Figure 3.2, seen again at right. First,
we sum up the squared deviations yi − ȳ to get the total variation:

TV =
n

∑
i=1

(yi − ȳ)2 = 166,513,967 .
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Next, we sum up the squared deviations of the fitted values. For
each observation, the fitted value is just the group-wise mean for
the corresponding month, given by the blue dots at right:

PV =
n

∑
i=1

(ŷi − ȳ)2 = 50,262,962 .

Finally, we sum up the squared residuals from the model:

UV =
n

∑
i=1

(yi − ŷi)
2 = 116,251,005 .

Sure enough: 166,513,967 = 50,262,962 + 116,251,005. The same
“TV = PV + UV” statement holds when using sums of squares,
just as for the previous data set.

And if we try sums of absolute values?

n

∑
i=1
|yi − ȳ| = 397,887.7

n

∑
i=1
|ŷi − ȳ| = 220,382.1

n

∑
i=1
|yi − ŷi| = 325,409.0 .
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Figure 3.7: Two imaginary data sets,
along with their least squares lines.
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Clearly, 397,887.7 6= 220,382.1 + 325,409.0. Just like the mammalian
sleep-pattern data, the peak-demand data exhibits no partitioning-
of-variation effect using sums of absolute deviations.

The same decomposition also holds for linear regression mod-
els. In Figure 3.7 we see two scatter plots of two simulated data
sets, both measured on the same X and Y scales. Next to each
are dot plots of the original Y variable, the fitted values, and the
residuals. In each case, TV = PV + UV, and therefore the three
standard deviations form Pythagorean triples.

The analysis of variance: a first look

Measuring variation using sums of squares is not at all an obvi-
ous thing to start out doing. But obvious or not, we do it for a very
good reason: sums of squares follow the lovely, clean decomposi-
tion that we happened upon in the previous section:

n

∑
i=1

(yi − ȳ)2 =
n

∑
i=1

(ŷi − ȳ)2 +
n

∑
i=1

(yi − ŷi)
2

TV = PV + UV . (3.1)

This is true both for group-wise models and for linear models. TV
and UV tell us much variation we started with, and how much
we have left over after fitting the model, respectively. PV tells us
where the missing variation went—into the fitted values!

As we’ve repeatedly mentioned, it would be perfectly sensible
to measure variation using sums of absolute values |yi − ŷi| in-
stead, or even something else entirely. But if we were to do this,
the analogous “TV = PV + UV” decomposition would not hold as
a general rule:

n

∑
i=1
|yi − ȳ| 6=

n

∑
i=1
|ŷi − ȳ|+

n

∑
i=1
|yi − ŷi| .

In fact, a stronger statement is true: there is literally no power
other than 2 that we could have chosen that would have led to
a decomposition like Equation 3.1. Sums of squares are special
because they, and they alone, can be partitioned cleanly into pre-
dictable and unpredictable components.

This partitioning effect is something of a mystery—most things
in everyday life simply don’t work this way. For example, imagine
that you and your sibling are trying to divide up a group of 100
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stuffed animals that you own in common. It makes no sense to
say: “Well, there are 10,000 (100

2) squared-stuffed-animalss in
total, so I’ll take 3,600 (60

2) squared stuffed animals, and you take
the remaining 1,600 (40

2).” Not only is the statement itself barely
interpretable—what the heck is a squared stuffed animal?—but the
math doesn’t even work out (1002 6= 602 + 402).

a

b
c

Is there a deeper reason why this partitioning effect occurs
for sums of squares in statistical models, and not for some other
measure of variation? The figure at right should jog your mem-
ory, for this isn’t the first time you’ve seen a similar result before.
Pythagoras’ famous theorem says that c2 = a2 + b2, where c is
the hypotenuse of a right triangle, and a and b are the legs. Notice
that Pythagoras doesn’t have anything interesting to say about the
actual numbers: c 6= a + b. It’s the squares of the numbers that
matter.

This way of partitioning a whole into parts makes no sense
for DVDs, but it does occur in real life—namely, every time you
traverse a city or campus laid out on a grid. In Figure 3.8, for
example, you see part of a 1930 map of the University of Texas.
Both then and now, any student who wanted to make her way
from the University Methodist Church (upper left star) to the
football stadium (lower right star) would need to travel about 870

meters as the crow flies. She would probably do so in two stages:
first by going 440 meters south on Guadalupe, and then by going
750 meters east on 21st Street.

Notice how the total distance gets partitioned: 870 6= 440 +

750, but 8702 = 4402 + 7502. North–south and east–west are
perpendicular directions, and if you stay along these axes, total
distances will add in the Pythagorean way, rather than in the usual
way of everyday arithmetic.

So it is with a statistical model. You can think of the fitted val-
ues ŷi and the residuals ei as pointing in two different directions
that are, mathematically speaking, perpendicular to one another:
one direction that can be predicted by the model, and one direc-
tion that can’t. The total variation is then like the hypotenuse of
the right triangle so formed:

This business of partitioning sums of squares into components
is called the analysis of variance, or ANOVA. (Analysis, as in split-
ting apart.) So far we’ve only split TV into two components, PV
and UV. Later on, we’ll learn that the same partitioning effect still
holds even when we have more than one X variable, and that we
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Figure 3.8: A map of the University
of Texas in 1930, with two houses of
worship highlighted: the University
Methodist Church (upper left) and the
football stadium (lower right).
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can actually sub-partition PV into different components corre-
sponding to the different predictors.

One final note on sums of squares: I’ve been vague about one
crucial point. It turns out that this story about the fitted val-
ues and residuals pointing in perpendicular directions isn’t a
metaphor. It’s a genuine mathematical reality—a deep conse-
quence, in fact, of the geometry of vectors in high-dimensional
Euclidean space. We’ll leave it at the metaphorical level for now,
though; it’s not that the math is all that hard, but it does require
some extra notation that is best deferred to a more advanced treat-
ment of regression. Just be aware that the standard deviations of
the three main quantities—the residuals, the fitted values, and the
y values—will always form a Pythagorean triple.
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The coefficient of determination: R2

By themselves, sums of squares are hard to interpret, because
they are measured in squared units of the Y variable. But their ra-
tios are highly meaningful. In fact, the ratio of PV to TV—or what
fraction of the total variation has been predicted by the model—is
one of the most frequently quoted summary measures in all of sta-
tistical modeling. This ratio is called the coefficient of determination,
and is usually denoted by the symbol R2:

R2 =
PV
TV

= 1− UV
TV

.

Dividing by TV simultaneously cancels the units of PV and stan-
dardizes it by the original scale of the data.

The value of R2 is a property of a model and a data set con-
sidered jointly, and not of either one considered on its own. In
analyzing the mammalian sleep-pattern data, for example, we
started out with TV = 102.1 squared hours in total variation, and
were left with UV = 65.7 squared hours in unpredictable variation
after fitting the group-wise model based on the predation index.
Therefore R2 = PV/TV ≈ 0.36, meaning that the model predicts
36% of the total variation in dreaming hours. An interesting fact is that, for a linear

regression model, R2 = r2. That is, the
coefficient of determination is precisely
equal to the square of the sample
correlation coefficient between X and
Y. This is yet another reason to use
correlation only for measuring linear
relationships.

The correct interpretation of R2 sometimes trips people up, and
is therefore worth repeating: it is the proportion of variance in the
data that can be predicted using the statistical model in question.
Here are three common mistakes of interpretation to look out for,
both in your own work and in that of others.

Mistake 1: Confusing R2 with the slope of a regression line. We’ve
now encountered three ways of summarizing the dependence
between a predictor X and response Y:

r, the sample correlation coefficient between Y and X.

β̂1, the slope from the least-squares fit of Y on X. This describes
the average rate of change of the Y variable as the X variable
changes.

R2, the coefficient of determination from the least-squares fit of Y
on X. This measures how much of the variation in Y can be
predicted using the least-squares regression line of Y on X:

R2 = 1− UV
TV

=
PV
TV

,
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or predictable variation divided by total variation.

These are different quantities: the slope β1 quantifies the trend in
Y as a function of X, while both r and R2 quantify the amount of
variability in the data that is predictable using the trend.

Another difference is that both r and R2 are unit-free quantities,
while β1 is not. No matter how Y is measured, its units cancel out
when you churn through the formulas for r and R2—you should
try the algebra yourself. This is as it should be: r and R2 are meant
to provide a measure of dependence that can be compared across
different data sets. They must not, therefore, be contingent upon
the units of measure for a particular problem.

On the other hand, β1 is measured as a ratio of the units of Y to
units of X, and is inescapably problem-specific. The slope, after all,
is a rate of change:

• If X is years of higher education and Y is future salary in
dollars, then β1 is dollars per year of education.

• If X is seconds and Y is meters, then β1 is meters per second.

• If X is bits and Y is druthers, then β1 is druthers per bit.

And so forth.
These quantities are also related to each other. We already know

that R2 is also the square of the sample correlation between X
and Y. What may come as more of a surprise is that R2 is also the
square of the correlation coefficient between yi and ŷi, the fitted
values from the regression line.2 Intuitively, this is because the 2 To see this algebraically, note that

r = ∑n
i=1(yi − ȳ)(ŷi − ȳ)

(n− 1)sysŷ
.

Plug in the fitted values ŷi = β̂0 + xi β̂1,
and by churning through the algebra
you will be able to recover r(y, x) at the
end.

least-squares line absorbs all the correlation between X and Y into
the fitted values ŷ, leaving us with r(ŷ, x) = r(y, x) and r(e, x) = 0.
Remember: TV = PV + UV, and the PV is precisely the variation
we can explain by taking the “X-ness” out of Y.

The upshot is that all three of our summary quantities—r, β̂1,
and R2—can be related to each other in a single line of equations:{

r(y, x)
}2

=
{

r(y, ŷ)
}2

= R2 .

That is: the squared correlation between y and x equals the squared
correlation between y and the fitted values of the model (ŷ), which
also equals the R2 of the model.

Mistake 2: Quoting R2 while ignoring the story in the residuals. We
have seen that the residuals from the least-squares line are un-
correlated with the predictor X. Uncorrelated, yes—but not nec-
essarily independent. Take the four plots from Figure 1.9, shown
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Figure 3.9: These four data sets have the
same least-squares line.
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again on page 73. These four data sets have the same correlation
coefficient, r = 0.816, despite having very different patterns of
dependence between the X and Y variable.

The disturbing similarity runs even deeper: the four data sets
all have the same least-squares line and the same value of R2,
too. In Figure 3.9 we see the same set of three plots for each data
set: the data plus the least-squares line; the fitted values versus
X; and the residuals versus X. Note that in each case, despite
appearances, the residuals and the predictor variable have zero
sample correlation; this is an inescapable property of least squares.

Despite being equivalent according to just about every standard
numerical summary, these data sets are obviously very different
from one another. In particular, only in the third case do the resid-
uals seem truly independent of X. In the other three cases, there is
clearly still some X-ness left in Y that we can see in the residuals.
Said another way, there is still information in X left on the table
that we can use for predicting Y, even if that information cannot
be measured using the crude tool of sample correlation. It will
necessarily be true that r(e, x) = 0. But sometimes this will be a
truth that lies, and if you plot your data, your eyes will pick up the
lie immediately.

The moral of the story is: like the correlation coefficient, R2 is
just a single number, and can only tell you so much. Therefore
when you fit a regression, always plot the residuals versus X. Ide-
ally you will see a random cloud, and no X-ness left in Y. But you
should watch out for systematic nonlinear trends—for example,
groups of nearby points that are all above or below zero together.
This certainly describes the first data set, where the real regres-
sion function looks to be a parabola, and where we can see a clear
trend left over in the residuals. You should also be on the lookout
for obvious outliers, with the second and fourth data sets pro-
viding good examples. These outliers can be very influential in a
standard least-squares fit.

We will soon turn to the question of how to remedy these prob-
lems. For now, though, it’s important to be able to diagnose them
in the residuals.

Mistake 3: Confusing statistical explanations with real explanations.
You will often hear R2 described as the proportion of variance in Y
“explained” by the statistical model. Do not confuse this usage of
the word “explain” with the ordinary English usage of the word,
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which inevitably has something to do with causality. This is an
insidious ambiguity. As Edward Tufte writes:

A big R2 means that X is relatively successful in predicting
the value of Y—not necessarily that X causes Y or even that
X is a meaningful explanation of Y. As you might imagine,
some researchers, in presenting their results, tend to play on
the ambiguity of the word “explain” in this context to avoid
the risk of making an out-and-out assertion of causality while
creating the appearance that something really was explained
substantively as well as statistically.3 3 Data Analysis for Politics and Policy,

p. 72.
You’ll notice that, for precisely this reason, we’ve avoided describ-
ing R2 in terms of “explanation” at all, and have instead referred
to it as the “ratio of predictable variation to total variation.”

We know that correlation and causality are not the same thing,
and R2 quantifies the former, not the latter. Consider the data set
in the table at right. Regressing the number of patent applications
on the number of letters in the vice president’s first name yields
β̂1 = −26, 920 applications per letter, suggesting a negative trend.
Moreover, the regression produces an impressive-looking R2 of
0.71, meaning that over two-thirds of the variability in patent ap-
plications can be predicted using the length of the vice president’s
first name alone.

Letters in first Number of
Year name of U.S. U.S. patent

vice president applications

2000 2 315,015

1999 2 288,811

1998 2 260,889

1997 2 232,424

1996 2 211,013

1995 2 228,238

1994 2 206,090

1993 2 188,739

1992 3 186,507

1991 3 177,830

1990 3 176,264

1989 3 165,748

1988 6 151,491

1987 6 139,455

1986 6 132,665

1985 6 126,788

1984 6 120,276

1983 6 112,040

1982 6 117,987

1981 6 113,966

Table 3.1: Patent-application data
available from the United States Patent
and Trademark Office, Electronic
Information Products Division.

Nothing has been “explained” here at all, the high R2 notwith-
standing. The least-squares fit is capable of answering the ques-
tion: if X has a causal linear effect on Y, then what is the best
estimate of this effect, and how much variation does this effect
account for? This question assumes a causal hypothesis, and there-
fore patently cannot be used to test this hypothesis. In particular,
calling one variable the “predictor” and the other variable the
“response” simply does not decide the issue of causation.





4
Grouping variables in regression

Grouping variables and aggregation paradoxes

The previous chapters have taught us to fit equations to data
involving a numerical response and a numerical predictor. In
this chapter, we’ll generalize these ideas to incorporate grouping
variables as predictors, too.

It’s very common in real-world systems for one variable to
modulate the effect of another. For example, a person’s overall
size and weight modulate the relationship between alcohol and
cognitive impairment. A single glass of wine might make a small
person feel drunk, but have a negligible effect on a big person.

This phenomenon is easiest to visualize in data when the vari-
able that does the modulating is categorical. To see an example of
this, we’ll revisit the data set on college GPA versus high-school
SAT scores. You’ll recall that this data set catalogues all 5,191

students at the University of Texas who matriculated in the fall
semester of 2000, and who went on to graduate within five years.
In Figure 4.2, we notice the expected positive relationship between
combined SAT score and final GPA. We also notice the fact that
SAT scores and graduating GPAs tend to differ substantially from
one college to the next. Figure 4.1 shows boxplots of SAT and GPA
stratified by the ten undergraduate colleges at UT.

What we see in Figures 4.2 and 4.1 is an example of an aggre-
gation paradox, where the same trend that holds for individuals
does not hold for groupings of individuals. Why is this a para-
dox? Look carefully at the data: Figure 4.1 says that students with
higher SAT scores tend to have higher GPAs. Yet this trend does
not hold at the college level, even broadly. For example, Engineer-
ing students (as a group) have among the highest average SAT
scores, and among the lowest average GPAs. Thus we have a para-
dox: it looks as though high SAT scores predict high GPAs, but
being in a college with high SAT scores does not predict being in a
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Figure 4.2: Combined SAT scores versus
graduating GPA for the entering fall
class of 2000 at the University of Texas.

college with high GPAs.
The paradox disappears when we realize the the “College”

variable modulates the relationship between SAT score and GPA.
A student’s college is systematically associated with both SAT and
GPA: some degrees are harder than others, and these degrees tend
to enroll students with higher test scores.

The right way to proceed here is to disaggregate the data and
fit a different regression line within each of the ten colleges, to
account for the effect of the modulating variable. There are two
different ways to do this:

1. We could fit ten different lines, each with a different intercept
(β(k)

0 ), but all with the same slope (β1). This would make
sense if we thought that the same SAT–GPA relationship
ought to hold within each college, but that each college had a
systematically higher or lower intercept (average GPA). These
are the red lines in Figure 4.3. You can see the differences
among the red lines if you look carefully at where they hit
the y axis in relation to a GPA of 2.5—for example, compare
Communications and Engineering.

2. We could fit ten different lines, allowing both the slope and
the intercept to differ for each college. We would do this
if we thought that the SAT–GPA relationship differed fun-
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Figure 4.3: Separate regression models
fit for GPA versus SAT within each
college. The red lines all have the same
slope, but a different intercept for each
college. The blue lines all have different
intercepts and different slopes.

damentally across the colleges. These are the blue lines in
Figure 4.3.

But which strategy should we take? And how would we even
accomplish strategy 1 using ordinary least squares?

Things get even more complex in the presence of more than one
grouping variable. For example, we might want to look at these
relationships separately for different years, for men versus women,
and for in-state and out-of-state students. To be able to model the
effect of all these variables on GPA simultaneously, we will need to
introduce some new notation and a few new concepts.

Models for a single grouping variable

Dummy variables

Let’s return to a simple scenario where we have numerical data
that falls into two groups, and we want to compare the variation
between the groups. The dotplot in Figure 4.4 shows the weekly
sales volume of package sliced cheese over 61 weeks at a Dallas-
area Kroger’s grocery store. In 38 of these weeks, the store set up
a prominent display near the entrance, calling shoppers’ attention
to the various culinary adventures they might undertake with the
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cheese. The data show that, in these 38 weeks, sales were higher
overall than when no display was present.

How much higher? The average sales volume in display weeks
was 5, 577 units (the blue dotted line in Figure 4.4), versus an aver-
age of 2341 units in non-display weeks (the red dotted line). Thus
sales were 3236 units higher in the display weeks. This difference
is depicted in Figure 4.4 as the difference or offset between the
dotted lines.

Weekly sales of cheese at a 
 Dallas−area Kroger
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Figure 4.4: Weekly sales of packaged
cheese slices at a Dallas-area Kroger’s
grocery store, both with and without
the presence of an in-store display ad
for the cheese. The red dot shows the
mean of the no-display weeks, and the
blue dot shows the mean of the with-
display weeks. The estimated coefficient
for the dummy variable that encodes
the presence of a display ad is 3236,
which is the vertical distance between
the two dots.

This example emphasizes that in many data sets, we care less
about the absolute magnitude of a response under different con-
ditions, and more about the differences between those conditions.
We therefore often build our model in such a way that these differ-
ences are estimated directly, rather than indirectly (i.e. by calculat-
ing means and then subtracting them).

We do this using indicator or dummy variables. To understand
this idea, take the simple case of a single grouping variable x with
two levels: “on” (x = 1) and “off” (x = 0). We can write this
model in “baseline/offset” form:

yi = β0 + β11{xi=1} + ei .

The quantity 1{xi=1} is called a dummy variable; it takes the value
1 when xi = 1, and the value 0 otherwise. Just as in an ordinary
linear model, we call β0 and β1 the coefficients of the model. This
way of expressing the model implies the following.

Group mean for case where x is off = β0

Group mean for case where x is on = β0 + β1 .

Therefore, we can think of β0 as the baseline (or intercept), and β1

as the offset. To see this in action, consult Figure 4.4 again. Here
the dummy variable encodes the presence of an in-store display.
The red dot at 2341, in the non-display weeks, is β0. This is the
baseline case, when the dummy variable x is “off.” The coefficient
for the dummy variable, β1 = 3236, is the vertical distance between
the two means. Thus if we wanted to reconstruct the mean for the
with-display weeks, we would just add the baseline and the offset,
to arrive at 2341 + 3236 = 5577, where the blue dot sits.

As before, we estimate the values of β0 and β1 using the least-
squares criterion: that is, make the sum of squared errors, ∑n

i=1 e2
i ,

as small as possible. This is mathematically equivalent to com-
puting the group-wise means separately, and then calculating the
difference between the means.
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Figure 4.5: Weekly sales of packaged
cheese slices during weeks with an
advertising display at 11 Kroger’s
grocery stores across the country.

More than two levels

If the categorical predictor x has more than two levels, we repre-
sent it in terms of more than one dummy variable. Suppose that x
can take three levels, labeled arbitrarily as 0 through 2. Then our
model is

yi = β0 + β
(1)
1 1{xi=1} + β

(2)
1 1{xi=2} + ei .

The dummy variables 1{xi=1} and 1{xi=2} tell you which of the
levels is active for the ith case in the data set.1 1 Normal people count starting at 1.

Therefore you might find it strange that
we start counting levels of a categorical
variable at 0. The rationale here is that
this makes the notation for group-
wise models a lot cleaner compared to
starting at 1.

More generally, suppose we have a grouping variable with K
levels. Then β

(k)
1 is the coefficient associated with the kth level of

the grouping variable, and we write the full model as a sum of
K− 1 dummy-variable effects, like this:

yi = β0 +
K−1

∑
k=1

β
(k)
1 1{xi=k} + ei (4.1)
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We call this a group-wise model. Notice that there is no dummy
variable for the case x = 0. This is the baseline level, whose group
mean is the intercept β0. In general, for a categorical variable
with K levels, we will need K − 1 dummy variables, and at most
one of these K − 1 dummy variables is ever active for a single
observation. The coefficient on each dummy variable (β(k)

1 ) is the
differences between the baseline and the mean of group k:

Group mean for case where (xi = 0) = β0

Group mean for case where (xi = k) = β0 + β
(k)
1 .

In Figure 4.5, we see an example of a single categorical variable
with more than two levels. The figure shows weekly cheese sales
(during display-present weeks only) at 11 different Kroger stores
in 11 different markets across the country. The grouping vari-
able here is the market: Atlanta, Birmingham, Cincinnati, and so
forth. If we fit a model like Equation 4.1 to the data in this figure,
choosing Atlanta to be the baseline, we get the set of estimated co-
efficients in the second column (“Coefficient”) of the table below:

Variable Coefficient Group mean

Intercept 5796 —
Birmingham -3864 1932

Cincinnati 427 6223

Columbus -543 5253

Dallas -219 5577

Detroit 400 6196

Houston 4459 10255

Indianapolis -1542 4254

Louisville -2409 3387

Nashville -1838 3958

Roanoke -717 5079

Atlanta is the baseline, and so the intercept is the group mean
for Atlanta: 5796 packages of crappy cheese. To get the group
mean for an individual market, we add that market’s offset to the
baseline. For example, the mean weekly sales volume in Houston
is 5796 + 4459 = 10255 units. Group mean = baseline + offset.

The figure also shows you two of the offsets as arrows, to give
you a visual sense of what these numbers in the above table repre-
sent. The coefficient for Houston is β

(6)
1 = 4459, because the group



84 data science

mean for Houston (10255) is 4459 units higher than the baseline
group mean for Atlanta (a positive offset). Similarly, the coeffi-
cient for Birmingham is β

(1)
1 = −3864, because the group mean

for Birmingham (1932) is 3864 units lower than the baseline group
mean for Atlanta (a negative offset).

The choice of baseline. In the above analysis, we chose Atlanta as
the baseline level of the grouping variable. This was arbitrary.
We could have chosen any city as a baseline, measuring the other
cities as offsets from there instead.

A natural question is: does the model change depending on
what level of the grouping variable we choose to call the baseline?
The answer is: yes and no. Yes, the estimated model coefficients
will change when a different baseline is used; but no, the under-
lying group means do not change. To see this, consider what hap-
pens when we fit another model like Equation 4.1 to the Kroger
cheese-sales data, now choosing the Dallas store to be the baseline:

Variable Coefficient Group mean

Intercept 5577 —
Atlanta 219 5796

Birmingham -3644 1932

Cincinnati 646 6223

Columbus -324 5253

Detroit 619 6196

Houston 4678 10255

Indianapolis -1323 4254

Louisville -2190 3387

Nashville -1619 3958

Roanoke -498 5079

The intercept is the Dallas group mean of 5577, and the other
market-level coefficients have changed from the previous table,
since these now represent offsets compared to a different baseline.
But the group means themselves do not change. The moral of the
story is that the coefficients in a model involving dummy variables
do depend upon the choice of baseline, but that the information
these coefficients encode—the means of the underlying groups—
does not. Different choices of the baseline just lead to different
ways of expressing this information.
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Multiple grouping variables

We began our discussion of dummy variables by looking at a
simple group-wise model with a binary predictor, meaning that xi

is either 0 or 1. Such a model takes the form

yi = β0 + β11{xi=1} + ei .

We learned something important about this model: that the co-
efficient β1 can be interpreted as the differential effect of being
in group 1, as opposed to the baseline (group 0).2 That’s a nice 2 Remember, we start counting

groups/levels at 0.feature of using dummy variables: if we care primarily about the
difference in the average response between conditions, we get an
estimate of that difference (β̂1) directly from the fitted model.

This approach of using dummy variables to encode the group-
ing structure of our data really comes into its own when we en-
counter data sets with more than one grouping variable. To see
why, we’ll spend some time with the data in Figure 4.6.

Main effects

Making a best-selling video game is hard. Not only do you need a
lot of cash, a good story, and a deep roster of artists, but you also
need to make the game fun to play. Take Mario Kart for the Super
Nintendo, my favorite video game from childhood. In Mario Kart,
you had to react quickly to dodge banana peels and Koopa shells
launched by your opponents as you all raced virtual go-karts
around a track. The game was calibrated just right. If the required
reaction time had been just a little slower, the game would have
been too easy, and therefore boring. But if the required reaction
time had been a little bit faster, the game would have been too
hard, and therefore also boring.

Human reaction time to visual stimuli is a big deal to video
game makers. They spend a lot of time studying it and adjusting
their games according to what they find. Figure 4.6 shows the re-
sults of one such study. Participants were presented with a natural
scene on a computer monitor, and asked to react (by pressing a
button) when they saw an animated figure appear in the scene.3 3 Essentially the company was measur-

ing how quickly people could react to a
bad guy popping up on the screen in a
video game.

The experimenters varied the conditions of the natural scene:
some were cluttered, while others were relatively open; in some,
the figure appeared far away in the scene, while in others it ap-
peared close up. They presented all combinations of these condi-
tions to each participant many times over. The top two panels of

https://en.wikipedia.org/wiki/List_of_most_expensive_video_games_to_develop
https://en.wikipedia.org/wiki/List_of_most_expensive_video_games_to_develop
https://www.google.com/#q=koopa+shell+8+bit
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Figure 4.6: Reaction time to visual
stimuli in a controlled experiment run
by a major video-game maker. Top-
left: participants reacted more slowly,
on average, when the stimulus was
far away within the scene. Top-right:
participants reacted more slowly, on
average, in a scene with significant
visual clutter. Bottom: systematic
differences in reaction time across
participants in the trial.

Figure 4.6 show boxplots of all participants’ reaction times across
all trials under these varying conditions. On average, participants
reacted more slowly to scenes that were far away (top left panel)
and that were cluttered (top right panel).

We’ll return to the bottom panel of Figure 4.6 shortly. For now,
let’s focus on the “distance effect” and the “clutter effect” in the
top two panels. This presents us with the case of two grouping
variables, x1 and x2, each of which affects the response variable,
and each of which can take the value 0 (“off”) or 1 (“on”). To
account for this, we need to build a model that is capable of de-
scribing the joint effect of both variables at once.

Table 4.1: Mean reaction time across
all trials and participants for the four
combinations of the two experimental
factors in the video game data.

Cluttered Far away Time (ms)

No
No 491

Yes 522

Yes
No 559

Yes 629

Strategy 1: slice and dice. One approach to modeling the joint ef-
fect of x1 and x2 on the response y is to slice and dice the data. In
other words: take subsets of the data for each of the four combi-
nations of x1 and x2, and compute the mean within each subset.
For our video-game data, we get the result in Table 4.1. Clearly the
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“cluttered + far away” scenes are the hardest, on average.
This slice-and-dice approach is intuitively reasonable, but com-

binatorially explosive. With only two binary grouping variables,
we have four possible combinations—not a big deal. But suppose
we had 10 binary grouping variables instead. Then there would be
210 = 1024 possible subsets of the data, and thus 1024 group-wise
means to estimate. For a scenario like this, if you were to take the
slice-and-dice approach, you would need a lot of data—and not
merely a lot of data overall, but a lot of data for each combination
separately.

Strategy 2: use dummy variables. A second strategy is to estimate
the effect of x1 and x2 by building a model that uses dummy vari-
ables. Intuitively, the model we’ll fit assumes that the response can
be expressed as:

yi = ŷi + ei = Baseline+ (Effect if xi1 on)+ (Effect if xi2 on)+Residual .

Notice that we need two subscripts on the predictors xi1 and xi2: i,
to index which case in the data set is being referred to; and 1 or 2,
to indicate which categorical predictor is being referred to (e.g. far
away versus cluttered).

This notation gets cumbersome quickly. We can write it more
concisely in terms of dummy variables, just as we learned to do in
the case of a single grouping variable:

yi = β0 + β11{xi1=1} + β21{xi2=1} + ei .

Notice how the dummy variables affect the expected value of
yi by being either present or absent, depending on the case. For
example, if xi2 = 0, then the β21{x2} term falls away, and we’re left
with the baseline, plus the effect of x1 being on, plus the residual.
We refer to β1 and β2 as the main effects of the model, for reasons
that will become clear in a moment.

If we fit this model to the video-game data in Figure 4.1, we get
the equation

Reaction = 482 + 87 · 1{xi1=1} + 50 · 1{xi2=1} + Residual , (4.2)

where xi1 = 1 means that the scene was cluttered, and xi2 = 1
means that the scene was far away. This equation says that if the
scene was cluttered, the average reaction time became 87 millisec-
onds slower; while if the scene was far away, the average reaction
time became 50 milliseconds slower.
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Interactions

A key assumption of the model in Equation 4.2 is that the effects
of clutter and distance on reaction time are separable. That is, if
we want to compute the joint effect of both conditions, we simply
add the individual effects together.

But what if the effects of x1 and x2 aren’t separable? We might
instead believe a model like this:

yi = Baseline+ (Effect if x1 on)+ (Effect if x2 on)+ (Extra effect if both x1 and x2 on)+Residual .

In the context of our video-games data, this would imply that
there’s something different about scenes that are both cluttered
and far away that cannot be described by just summing the two
individual effects.

The world is full of situations like this, where the whole is dif-
ferent than the sum of the parts. The ancient Greeks referred to
this idea as συνεργ, or synergia. This roughly means “working
together,” and it’s the origin of the English word “synergy.” Syner-
gies abound:

• Neither an actor nor a cameraman can do much individually,
but together they can make a film.

• Two hydrogens and an oxygen make water, something com-
pletely unlike either of its constituent parts.

• Biking up a hill is hard. Biking in a big gear is hard. Biking
up a hill in a big gear is impossible, unless you take drugs.

Examples of the whole being worse than the sum of the parts
also abound—groupthink on committees, ill-conceived corporate
mergers, Tylenol and alcohol, and so forth.4 4 Don’t take Tylenol and alcohol to-

gether or you’ll risk liver damage.In statistics, we operationalize the idea of synergy using inter-
actions among variables. An interaction is what we get when we
multiply two variables together. In the case of two binary categori-
cal predictors, a model with an interaction looks like this:

yi = β0 + β11{x1=1} + β21{x2=1} + β121{x1=1}1{x2=1} + ei .

We call β12 an interaction term; this term disappears from the
model unless x1 and x2 are both equal to 1. Fitting this model
to the video-games data gives the following estimates:

Reaction = 491+ 68 · 1{xi1=1}+ 31 · 1{xi2=1}+ 39 · 1{xi1=1}1{xi2=1}+Residual ,

We interpret this model as follows:
• The baseline reaction time for scenes that are neither clut-

tered nor far away is 491 milliseconds (ms).

http://www.livestrong.com/article/162564-contraindications-for-tylenol/
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• The main effect for the “cluttered” variable is 68 ms.
• The main effect for the “far away” variable is 31 ms.
• The interaction effect for “cluttered” and “far away” is 39 ms.

In other words, scenes that are both cluttered and far away
yield average reaction times that are 39 milliseconds slower
than what you would expect from summing the individual
effects of the two variables.

From these main effects and the interaction we can use the
model to summarize the expected reaction time under any combi-
nation of experimental variables:

• (x1 = 0, x2 = 0): ŷ = 491 (neither cluttered nor far).
• (x1 = 1, x2 = 0): ŷ = 491 + 68 = 559 (cluttered, near).
• (x1 = 0, x2 = 1): ŷ = 491 + 31 = 522 (not cluttered, far).
• (x1 = 1, x2 = 1): ŷ = 491 + 68 + 31 + 39 = 629 (cluttered, far).

A key point regarding the fourth case in the list is that, when a
scene is both cluttered and far away, both the main effects and the
interaction term enter the prediction. You should also notice that
these predictions exactly match up with the group means in Table
4.1 on page 86.

Incorporating still more categorical predictors

Once you understand the basic recipe for incorporating two cat-
egorical predictors, you can easily extend that recipe to build a
model involving more than two. For example, let’s return one last
time to the video-game data in Figure 4.6 on page 86. So far, we’ve
been ignoring the bottom panel, which shows systematic differ-
ences in reaction times across different subjects in the study. But
we can also incorporate subject-level dummy variables to account
for these differences. The actual model equation starts to get ugly
with this many dummy variables, so we often use a shorthand that
describes our model intuitively rather than mathematically:

Time ∼ Clutter effect + (Distance effect) (4.3)

+ (Interaction of distance/clutter) + (Subject effects) .

Here the ∼ symbol means “is modeled by” or “is predicted by.”

Table 4.2: Fitted coefficients for the
model incorporating subject-level
dummy variables into the video-game
data. Remember, K levels of a factor
require K− 1 dummy variables, because
one level—in this case, the subject
labeled “Subject 6” in Figure 4.6—is the
baseline.

Variable β̂

Intercept 570

Cluttered 68

FarAway 31

Subject 8 -90

Subject 9 -136

Subject 10 -44

Subject 12 -76

Subject 13 -147

Subject 14 -112

Subject 15 -93

Subject 18 -8
Subject 20 -118

Subject 22 -34

Subject 26 -79

Cluttered:FarAway 39

There are 12 subjects in the data set. Thus to model the subject-
level effects, we introduce 11 dummy variables, in a manner sim-
ilar to what was done in Equation 4.1. The estimated coefficients
for this model are in Table 4.2.
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When to include interactions. In the model above, we’re assuming
that clutter and distance affect all subjects in the same way. Thus
we have 15 parameters to estimate: an intercept/baseline, two
main effects for Littered and FarAway, one interaction term, and 11

subject-level dummy variables. If instead we were to compute the
groupwise means for all possible combinations of subject, clutter,
and distance, we’d have 48 parameters to estimate: the group
mean for each combination of 12 subjects and 4 experimental
conditions. Moreover, we’d be implicitly assuming an interaction
between the experimental conditions and the subject, allowing
clutter and distance to affect each person’s average reaction time in
a different way, rather than all people in the same way.

This example should convey the power of using dummy vari-
ables and interactions to express how a response variable changes
as a function of several grouping variables. This framework forces
us to be explicit about our assumptions, but it also allows us to be
selective about the complexity of our models. Compare estimating
15 parameters versus estimating 48 parameters in the video-games
example—that’s a big difference in what we’re asking of our data.

The essence of the choice is this:

• If a variable affects the response in a similar way under a
broad range of conditions, regardless of what the other vari-
ables are doing, then that variable warrants only a main
effect in our model.

• But if a variable’s effect is modulated by some other variable,
we should describe that using an interaction between those
two variables.

The choice of which variables interact with which other ones
should ideally be guided by knowledge of the problem at hand.
For example, in a rowing race, a strong headwind makes all crews
slower. But wind affects lighter crews more than heavier crews:
weight modulates the effect of wind. Thus if we want to build
a model to predict the winner of an important race, like the one
between Oxford and Cambridge every spring on the Thames,
we should strongly consider including an interaction between
wind speed and crew weight. This is something that anyone
with knowledge of rowing could suggest, even before seeing any
data. But the choice of whether to include an interaction term in
a model can also be guided by the data itself. We will now learn
about a process called the analysis of variance that can help us

http://theboatraces.org
http://theboatraces.org
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address this important modeling question.
Before we get there, however, here’s one final generic guideline

about interactions: it is highly unusual to include an interaction
in a regression model without also including both corresponding
main effects. There are various technical math reasons why most
textbooks warn you about this, and why I’m doing so now. But
the most important concern is that it is very difficult to interpret a
model having interaction terms but no main effects. You should fit
such a model only if you have a very good reason.

ANOVA: the analysis of variance

The model in Equation 4 postulates four effects on the reaction
time for the video-game data: (1) an effect due to visual clutter;
(2) an effect due to distance of the stimulus in the scene; (3) an
interaction effect (synergy) of distance and clutter; and (4) effects
due to differences among experimental subjects. The R2 for this
model is about 0.23, and the residual standard deviation is about
126 milliseconds. This tells us something about the overall pre-
dictive abilities of the model. But can we say something about the
predictive abilities of the individual variables within this model?

Yes, we can, by conducting an analysis of variance (ANOVA).
An analysis of variance is just a simple book-keeping exercise
aimed at attributing credit to individual variables in a model. To
run an ANOVA, we build a model one step at time, adding one
new variable (or one new interaction among variables) at each
step. Every time we do this, we ask two questions:

(1) How many parameters did we have to add to the model to
account for the effects of this variable?5 This is usually called 5 For example, we needed to add 11

parameters to account for the “Subject”
variable in the video-games data,
because we needed to represent this
information in terms of 11 dummy
variables.

the degrees of freedom associated with that parameter.

(2) By how much did we improve the predictive power of the
model when we added this variable? There are a couple of
ways to measure this. First, remember the variance decomposi-
tion:

n

∑
i=1

(yi − ȳ)2 =
n

∑
i=1

(ŷi − ȳ)2 +
n

∑
i=1

(yi − ŷi)
2

TV = PV + UV .

Every time we add a new variable to a model, the total varia-
tion in the response variable (TV) stays the same, but we move
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some of this variation out of the “unpredictable” column (UV)
and into the “predictable” (PV) column. As a result, R2 will
always go up as a result of adding a variable to a model. In
ANOVA, we keep track of the precise numerical value of this
change in R2.

We could also measure the improvement in the model’s
predictive power using the residual standard deviation, which
we recall is calculated using the formula

se =

√
1

n− p

n

∑
i=1

(yi − ŷi)2 .

There’s an important difference with R2 here, in that se can
actually get worse (i.e. go up) when we add a variable to a
model. If this happens, it is generally a good indication of
overfitting.

The final result of an analysis of variance is a table—called the
ANOVA table—that shows the answers to these two questions at
each model-building step.

Let’s take the specific example of our model for the video-
games data, for which TV = 39, 190, 224. We’ll add one variable at
a time and track how TV is partitioned among PV and UV.6 6 The quantity TV = 39, 190, 224

highlights one feature that makes
ANOVA tricky at first: the units are
non-intuitive, since we measure im-
provement using sums of squares. Here
the units are squared milliseconds;
when you square a quantity like 1000

ms (1 second), you get 1,000,000 ms2,
which is why we’re seeing numbers in
the millions here.

Step 1. First, we add an effect due to visual clutter (Time ∼ Clut-
ter). The variance decomposition for this model is

39, 190, 224
TV

= 3, 671, 938
PV

+ 35, 518, 285
UV

.

Thus the clutter effect gets credit for predicting 3,671,938 (out of a
possible 39,190,224) units of total variation, at the cost of adding
one parameter to the model.

Step 2. Next, we add the distance effect to the model already
containing the clutter variable (Time ∼ Clutter + Distance). The
new variance decomposition is:

39, 190, 224
TV

= 4, 878, 397
PV

+ 34, 311, 827
UV

.

The previous PV was 3, 671, 938, and the new one is 4, 878, 397.
Thus the distance effect gets credit for 4, 878, 397− 3, 671, 938 =

1, 206, 459 units of total variation.
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Variable added # Pars (DF) ∆ PV R2 ∆R2 se ∆se

Intercept only 1 0.000 142.9
Clutter 1 3671938 0.094 0.094 136.1 6.8

Distance 1 1206459 0.125 0.031 133.8 2.3
Clutter:Distance 1 183633 0.129 0.005 133.5 0.3

Subject 11 4060822 0.223 0.104 125.6 7.9

Predictable Variation 9122852

Unpredictable Variation 30067371

Total Variation 39190224

Table 4.3: The analysis of variance
(ANOVA) table for the model incorpo-
rating effects due to clutter, distance,
and subject, along with an interaction
between clutter and distance. In an
ANOVA table, we add each variable in
stages, one at a time. “# Pars” refers to
the number of new parameters added
to the model at each stage. ∆PV refers
to the change in predictable variation
at each stage. R2 is the coefficient of
determination for the model at each
stage, and se is the residual standard
deviation. Remember that R2 always
goes up when we add a variable, while
se usually (but not always) goes down.

Step 3. Third, we add the interaction of distance and clutter to the
previous model (Time ∼ Clutter + Distance + Clutter:Distance).
The new variance decomposition is:

39, 190, 224
TV

= 5, 062, 030
PV

+ 34, 128, 194
UV

.

The previous PV was 4, 878, 397, and the new one is only slightly
better at 5, 062, 030. Thus the interaction effect gets credit for a
measly 5, 062, 030− 4, 878, 397 = 183, 633 units of total variation.

Step 4. Finally—almost done here—we add the 11 subject-level
dummy variables to the previous model (Time ∼ Clutter + Dis-
tance + Clutter:Distance + Subject). The new variance decomposi-
tion reveals a big bump in PV:

39, 190, 224
TV

= 9, 122, 852
PV

+ 30, 067, 371
UV

.

The previous PV was 5, 062, 030, and the new one is better at
9, 122, 852. Thus the subject effects get credit for 9, 122, 852 −
5, 062, 030 = 4, 060, 822 units of total variation.

Interpreting the ANOVA table. As you’ve now seen, the analysis of
variance really is just bookkeeping! The ANOVA table for the final
model (Time ∼ Clutter + Distance + Clutter:Distance + Subject)
is shown in Table 4.3. The chance in predictable variation at each
stage gives us a more nuanced picture of the model, compared
with simply quoting R2, because it allows us to partition credit
among the individual predictor variables in the model.

The most intuitive way to summarize this information is to
track the change in R2 and residual standard deviation (se) at
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each step. For example, in Table 4.3, it’s clear that accounting for
subject-level variation improves our predictions the most, followed
by clutter and then distance. The distance–clutter interaction con-
tributes a small amount to the predictive ability of the model,
relatively speaking: it improves R2 by only half a percentage point.
In fact, the distance/clutter interaction looks so negligible that
we might even consider removing this effect from the model, just
to simplify. We’ll revisit this question later in the book, when we
learn some more advanced tools for statistical hypothesis testing
and predictive model building.

Finally, always remember that the construction of an ANOVA
table is inherently sequential. For example, first we add the clutter
variable, which remains in the model at every subsequent step;
then we add the distance variable, which remains in the model at
every subsequent step; and so forth. Thus the actual question be-
ing answered at each stage of an analysis of variance is: how much
variation in the response can this new variable predict, in the con-
text of what has already been predicted by other variables in the
model? This point—the importance of context in interpreting an
ANOVA table—is subtle, but important. We’ll revisit it soon, when
we discuss the issues posed by correlation among the predictor
variables in a regression model.

Numerical and grouping variables together

Now we are ready to add a continuous predictor into the mix.
Start with the simplest case of two predictors for each observation:
a grouping variable xi,1 that can take levels 0 to K, and a numerical
predictor xi,2. We start with the regression equation involving a
set of K dummy variables, and add the effect of the continuous
predictor onto the right-hand side of the regression equation:

yi = β0 + β
(1)
1 1{xi1=1}+ β

(2)
1 1{xi1=2}+ · · ·+ β

(K)
1 1{xi1=K}+ β2xi2 + ei .

Now each group has its own regression equation:

Regression equation for case where (xi = 0): yi = β0 + β2xi2 + ei

Regression equation for case where (xi = k): yi = (β0 + β
(k)
1 ) + β2xi2 + ei .

Each line has a different intercept, but they all have the same
slope. These are the red lines in Figure 4.3 back on page 80.
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The coefficients β
(k)
1 are associated with the dummy variables

that encode which college a student is in. Notice that only one of
these dummy variables will be 1 for each person, and the rest will
be zero, since a person is only in one college. Here’s the regression
output when we ask for a model of GPA ∼ SAT.C + School:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.678365 0.096062 17.472 <2e-16 ***
SAT.C 0.001343 0.000043 31.235 <2e-16 ***
SchoolBUSINESS 0.004676 0.078285 0.060 0.9524

SchoolCOMMUNICATIONS 0.092682 0.080817 1.147 0.2515

SchoolEDUCATION 0.048688 0.085520 0.569 0.5692

SchoolENGINEERING -0.195433 0.078460 -2.491 0.0128 *
SchoolFINE ARTS 0.012366 0.084427 0.146 0.8836

SchoolLIBERAL ARTS -0.134092 0.077629 -1.727 0.0842 .

SchoolNATURAL SCIENCE -0.150631 0.077908 -1.933 0.0532 .

SchoolNURSING 0.028273 0.102243 0.277 0.7822

SchoolSOCIAL WORK -0.035320 0.139128 -0.254 0.7996

There is no dummy variable associated with Architecture, because
it is the baseline case, against which the other colleges are com-
pared. The regression coefficients associated with the “School”
dummy variables then shift the line systematically up or down
relative to the global intercept, but they do not change the slope of
the line. As the math above shows, we are fitting a model where
all colleges share a common slope, but have unique intercepts (11

parameters total). This is clearly a compromise solution between
two extremes: fitting a single model, with one slope and one in-
tercept common to all colleges (2 parameters); versus fitting ten
distinct models for the ten individual colleges, each with their
slope and intercept (20 parameters).

Interactions between grouping and numerical variables

We can also have modulating effects between numerical and
grouping predictors. For example, we might expect that, for stu-
dents in Liberal Arts, GPA’s will vary more sharply with SAT
Verbal scores, and less sharply with Math scores, than for students
in Engineering. Mathematically, this means that College modulates
the slope of the linear relationship between GPA and SAT scores.

If this is the case, then we should include an interaction term
in the model. Remember, in statistical models, interactions are
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formed by multiplying two predictors together—in this case,
a numerical predictor and a dummy (0–1) variable. When the
dummy variable is 0, the interaction term disappears. But when
the dummy is 1, the interaction is equal to the original quantitative
predictor, whose effective partial slope then changes.

Let’s take a simple example involving baseball salaries, plotted
in Figure 4.7 on page 97. On the y-axis are the log salaries of 142

baseball players. On the x-axis are their corresponding batting
averages. The kind of mark indicates whether the player is in the
Major League, AAA (the highest minor league), or AA (the next-
highest minor league). The straight lines reflect the least-squares
fit of a model that regresses log salary upon batting average and
dummy variables for a player’s league. The corresponding model
equation looks like this:

ŷi = β0 + β
(AAA)
1 · 1AAA + β

(MLB)
1 · 1MLB︸ ︷︷ ︸

Dummy variables

+β1 · AVG

The three lines are parallel: the coefficients on the dummy vari-
ables shift the line up or down as a function of a player’s league.

But if we want the slope to change with league as well—that is,
if we want league to modulate the relationship between salary and
batting average—then we must fit a model like this:

ŷi = β0 + β
(AAA)
1 · 1AAA + β

(MLB)
1 · 1MLB︸ ︷︷ ︸

Dummy variables

+β2 ·AVG+ β
(AAA)
3 · AVG · 1AAA + β

(MLB)
3 · AVG · 1MLB︸ ︷︷ ︸

Interaction terms

The y variable depends on β0 and β2 for all players, regardless of
league. But when a player is in AAA, the corresponding dummy
variable (1AAA) fires. Before, when a dummy variable fired, the
entire line was merely shifted up for down (as in Figure 4.7). Now,
an offset to the intercept (β(AAA)

1 ) and an offset to slope (β(AAA)
3 )

are activated. Ditto for players in the Major League: then the MLB
dummy variable (1MLB) fires, and both an offset to the intercept
(β(MLB)

1 ) and an offset to the slope (β(MLB)
3 ) are activated:

Regression equation for AA: yi = (β0) +(β2) · AVG +ei

Regression equation for AAA: yi = (β0 + β
(AAA)
1 ) +(β2 + β

(AAA)
3 ) · AVG +ei

Regression equation for MLB: yi = (β0 + β
(MLB)
1 ) +(β2 + β

(MLB)
3 ) · AVG +ei .

Fitting such model produces a picture like the one in Figure 4.8.
Without any interaction terms, the fitted model is:
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Figure 4.7: Baseball salaries versus
batting average for Major League, AAA,
and AA players.
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Figure 4.8: Baseball salaries versus
batting average for Major League, AAA,
and AA players. The fitted lines show
the model with an interaction term
between batting average and league.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.75795 0.41893 6.583 8.88e-10 ***
BattingAverage 5.69745 1.37000 4.159 5.59e-05 ***
ClassAAA 1.03370 0.07166 14.426 < 2e-16 ***
ClassMLB 2.00990 0.07603 26.436 < 2e-16 ***
---

Multiple R-squared: 0.845,Adjusted R-squared: 0.8416

With the interaction terms, we get:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.8392 0.6718 4.227 4.33e-05 ***
BattingAverage 5.4297 2.2067 2.461 0.0151 *
ClassAAA 1.8024 0.9135 1.973 0.0505 .

ClassMLB 0.3393 1.0450 0.325 0.7459

BattingAverage:ClassAAA -2.6758 3.0724 -0.871 0.3853

BattingAverage:ClassMLB 5.9258 3.6005 1.646 0.1021

---

Multiple R-squared: 0.8514,Adjusted R-squared: 0.846



grouping variables in regression 99
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Highway Gas Mileage versus Engine Power, with fitted lines (40 MPG or less)

Figure 4.9: A model for the car-mileage
data involving an interaction between
class and horsepower. Here we’ve
focused only on cars whose gas mileage
is less than 40 miles per gallon. For this
subset of the data, linearity looks like a
reasonable, if imperfect, assumption.

Dependence among predictors

In this section, we’ll discuss the issue of how to interpret an anal-
ysis of variance for a model where the predictors themselves are
correlated with each other. (Another term for correlation among
predictors is collinearity.) This discussion will expand upon a point
raised before—but only briefly—about the importance of context
in the sequential construction of an ANOVA table.

Let’s briefly review the analysis of variance (ANOVA). You’ll
recall that, in our look at the data on reaction time in video games,
we ran an ANOVA (Table 4.3) of a regression model that predicted
variation in human reaction time in terms of distance, visual clut-
ter, subject-level variation, and a distance/clutter interaction. Our
goal was to apportion credit among the individual parts of the
model, where “credit” was measured by each variable’s contribu-
tion to the predictable variation in the model’s variance decompo-
sition (TV = PV + UV). This led us, for example, to the conclusions
that subject-level variation was large relative to the other effects,
and that the distance/clutter interaction contributed only a modest
amount to the predictive abilities of the model.

We can also run an analysis of variance on models containing
numerical predictors. To see this in action, let’s revisit the data
on the gas mileage of cars from Figure 1.11, back on page 27. Re-
call that this data set involved 387 cars and three variables: gas
mileage, engine horsepower, and vehicle class (minivan, sedan,
sports car, SUV, or wagon). We can see this data once more in Fig-
ure 4.9, which shows a lattice plot of mileage versus horsepower,
stratified by vehicle class.
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In our earlier discussion of this data, we noted two facts:

(1) The classes exhibit systematic differences in their typical
mileages. For example, sedans have better gas mileage, on
average, than SUVs or minivans.

(2) Vehicle class seems to modulate the relationship between MPG
and engine power. As engine power increases, mileage gets
worse on average, regardless of vehicle class. But this drop-off
is steeper for wagons than for sports cars.

Previously, we described these facts only informally. But we
now have the right tools—dummy variables and interactions—that
allow us to quantify them in the context of a regression model.
Specifically: point (1) suggests that we need class-level dummy
variables, to move the intercepts up and down as appropriate for
each class; while point (2) suggests that we need an interaction
between class and horsepower, to make the slope of the regression
line get steeper or shallower as appropriate for each class. Using
our informal notation from earlier, our regression model should
look like this:

MPG ∼ Horsepower + Class + Class:Horsepower .

Upon fitting this model by least squares, we get the coefficients
in Table 4.4, at right. The corresponding fitted lines within each
class are also shown in Figure 4.9. The parameters of this fitted
model confirm our earlier informal observations based on the
lattice plot: that both the average mileage and the steepness of the
mileage/horsepower relationship are affected by vehicle class.

Table 4.4: Fitted coefficients (rounded
to the nearest hundredth) for the model
that predicts car gas mileage in terms of
engine horsepower, vehicle class, and a
class/horsepower interaction.

Variable β̂

Intercept 28.86

Horsepower -0.02

Sedan 9.28

Sports 4.08

SUV 0.94

Wagon 9.55

Horsepower:Sedan -0.03

Horsepower:Sports -0.01

Horsepower:SUV -0.02

Horsepower:Wagon -0.04

An analysis of variance table for this model looks like this.

Variable added # Pars R2 ∆R2 se ∆se

Intercept only 1 0 4.59

Horsepower 1 0.426 0.426 3.48 1.11

Class 4 0.725 0.299 2.42 1.06

Horsepower:Class 4 0.743 0.018 2.36 0.07

Table 4.5: An analysis of variance
(ANOVA) table for the model that
predicts highway gas mileage in terms
of a car’s engine power and vehicle
class, including both main effects and
an interaction term. In this ANOVA
table, the horsepower variable has been
added first, followed by vehicle class.

According to this table, we can attribute most of the credit for
predicting fuel economy to the horsepower variable (∆R2 = 0.426).
Most of the remaining credit goes to vehicle class (∆R2 = 0.299).
The interaction produces a modest change in R2; this bears out the
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visual impression conveyed by Figure 4.9, in which the slopes in
each panel are clearly different, but not dramatically so.

But this conclusion about the relative importance of horsepower
and vehicle class involves a major, even deal-breaking, caveat. Re-
member that an analysis of variance is inherently sequential: first
we add the horsepower variable, then we add vehicle class, and
then we add the interaction, tracking the variance decomposi-
tion at each stage. What happens if we build an ANOVA table by
adding vehicle class before we add horsepower?

Variable added # Pars R2 ∆R2 se ∆se

Intercept only 1 0 4.59

Class 4 0.397 0.397 3.58 1.01

Horsepower 1 0.725 0.328 2.42 1.16

Class:Horsepower 4 0.743 0.018 2.36 0.07

Table 4.6: A second analysis of variance
(ANOVA) table for the model that
predicts highway gas mileage in terms
of a car’s engine power and vehicle
class, including both main effects and
an interaction term. In this ANOVA
table, vehicle class has been added first,
followed by horsepower.

Now we reach the opposite conclusion: that vehicle class con-
tributes more (∆R2 = .397) to the predictable variation than does
horsepower (∆R2 = .328). Why does this happen? How could our
conclusion about the relative importance of the variables depend
upon something so arbitrary as the order in which we decide to
add them?

●● ●

●●

Minivan
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Sports

SUV

Wagon

100 200 300 400 500

Horsepower

Figure 4.10: Correlation between vehicle
class and horsepower.

Shared versus unique information

Figure 4.10 provides some intuition why this is so. In our data on
gas mileage, the two predictors (horsepower and vehicle class) are
correlated with each other: vehicles in certain classes, like SUVs
and sports cars, have more powerful engines on average than
sedans, wagons, and minivans.

To understand why this correlation between predictors would
matter so much in an analysis of variance, let’s consider the infor-
mation provided by each variable. First, a vehicle’s class tells us at
least two important things relevant for predicting gas mileage.
1) Weight: for example, SUVs tend to be heavier than sedans, and

heavier vehicles will get poorer gas mileage.
2) Aerodynamics: for example, minivans tend to be boxier than

sports cars, and boxier cars will get poorer gas mileage due
to increased drag at highway speeds.

Similarly, the horsepower of a vehicle’s engine also tells us at
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least two important things relevant for predicting gas mileage.
1) Weight: more powerful engines are themselves heavier, and

tend to come in cars that are heavier in other ways, too.
2) Fuel consumption: a smaller engine consumes less fuel and typi-

cally has better mileage than a bigger engine.

Notice that both variables provide information about a vehicle’s
weight; let’s call this the shared information. But each also pro-
vides information on something else specific to that variable; let’s
call this the unique information. The shared information between
the predictors manifests itself as correlation: bigger cars tend to
have both bigger engines, and they also to be in certain classes.
We can use a Venn diagram to represent both the shared and
the unique information provided by the predictors in a stylized
(i.e. non-mathematical) way:

Class Horsepower

Weight
Fuel 

consumptionAerodynamics

Weight
Fuel 

consumptionAerodynamics

Class Horsepower

Weight
Fuel 

consumptionAerodynamics

Class Horsepower

Figure 4.11: The two predictors in the
gas-mileage data set provide some
information content that is shared
between them, in addition to some
information that is unique to each one.

In the first analysis of variance (Table 4.5), we added horse-
power first. When we did so, the regression model greedily used
all the information it could from this predictor, including both the
“shared” and “unique” information. As a result, when we added
the class variable second, the shared information is redundant—
it was already accounted for by the model. We therefore end up
giving the class variable credit only for its unique information
content; all the information content it shares with horsepower was
already counted in step 1. This is illustrated in Figure 4.12.

But when we flip things around and add vehicle class to the
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Class Horsepower

Weight
Fuel 

consumptionAerodynamics

Weight
Fuel 

consumptionAerodynamics

Class Horsepower

Weight
Fuel 

consumptionAerodynamics

Class Horsepower

Figure 4.12: Our model for gas mileage
includes two variables: engine horse-
power and vehicle class. These variables
both convey information about a vehi-
cle’s size, in addition to some unique
information (e.g. class tells us about
aerodynamics, while horsepower tells
us about fuel consumption). When we
add the Horsepower variable first in
an analysis of variance (Table 4.5), we
attribute all of the shared information
content to Horsepower, and none to
Vehicle class, in our ANOVA table.

model first (Table 4.6), this picture changes. We end up giving the
class variable credit both for its unique information content and for
the information it shares with Horsepower. This leaves less overall
credit for Horsepower when we add it in step 2 of the ANOVA.
This is illustrated in Figure 4.13.

Class Horsepower

Weight
Fuel 

consumptionAerodynamics

Weight
Fuel 

consumptionAerodynamics

Class Horsepower

Weight
Fuel 

consumptionAerodynamics

Class Horsepower
Figure 4.13: (Continued from Figure
4.12.) But when we add the Class
variable first in an analysis of variance
(Table 4.5), we attribute all of the shared
information content to Class, and none
to Horsepower, in our ANOVA table.

This example highlights an unsatisfying but true feature of
the analysis of variance: when the variables are correlated, their
ordering matters when you build the ANOVA table.
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This feature of an ANOVA table at first seems counterintu-
itive, even disturbing. Yet similar phenomena occur all the time in
everyday life. A good analogy here is the dessert buffet at Thanks-
giving dinner. Imagine two different versions of dessert.

Version 1: After dinner, your aunt offers you apple pie, and you
eat your fill. The apple pie is delicious—you were really
looking forward to something sweet after a big Thanksgiving
meal. It makes you very happy.

Next, after you’ve eaten your fill of apple pie, your aunt
offers you pumpkin pie. Pumpkin pie is also delicious—
you love it just as much as apple. But your dessert tummy
is pretty full already. You eat a few bites, and you enjoy it;
that spicy pumpkin flavor is a little different to what you
get from an apple pie. But of course, pumpkin pie is still a
dessert, and you don’t enjoy it as much as you might have if
you hadn’t eaten so much apple pie first.

Version 2: After dinner, your aunt offers you pumpkin pie, and
you eat your fill. The pumpkin pie is delicious—all that
whipped cream on top goes so well with the nutmeg and
earthy pumpkin flavor. It makes you very happy.

Next, after you’ve eaten your fill of pumpkin pie, your aunt
offers you apple pie. Apple pie is also delicious—you love it
just as much as pumpkin. But your dessert tummy is pretty
full already. You eat a few bites, and you enjoy it; those tart
apples with all the cloves and cinnamon give a little different
flavor to what you get from a pumpkin pie. But apple pie is
still a dessert, and you don’t enjoy it as much as you might
have if you hadn’t eaten so much pumpkin pie first.

That evening, which pie are you going to remember? In version
1, you’ll attribute most of your Thanksgiving dessert afterglow
to the apple pie; while in version 2, you’ll attribute most of it to
pumpkin pie. Context matters, even if in the abstract you like both
pies the same amount.

An analysis of variance is like the one-at-a-time dessert eater
at Thanksgiving. Whatever variable we add to the model first, the
model greedily eats its fill of that, before turning to the second
variable. This affects how credit gets attributed. In our ANOVA
tables for the gas mileage data, our two variables (horsepower and
vehicle class) are like apple and pumpkin pie. Yes, they each offer
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something unique, but they also share a lot of their information
content (just like the pies are both desserts). Because of this, the
order in which they are added to the ANOVA table—or equiva-
lently, the context in which each variable’s marginal contribution
to the model is evaluated—matters a lot.

The moral of the story is that it rarely makes sense to speak of
“the” ANOVA table for a model—only “an” ANOVA table. Thus
there is no unique way to partition credit among multiple vari-
ables for their shared information content in a regression model.
We must make an arbitrary choice, and in an ANOVA table, that
choice is “winner take all” to the first variable added to the model.

Final thoughts on ANOVA. There are two further points to bear in
mind about the analysis of variance. First, the ANOVA table is not
the model itself, only an attempt to partition credit for predicting
the outcome among the variables in the model by adding those
variables one at a time. And while the ANOVA table is order-
dependent, the model itself isn’t. Regardless of the order in which
you add variables, you will always get the same model coefficients,
fitted values, and residuals at the end.

Second, we’ve discussed the subtleties of interpreting an ANOVA
table in the presence of correlation among the predictors. How-
ever, if the variables in the model are independent of one another,
then they have no shared information content, and the ANOVA
table does not depend upon the ordering of the variables.

This is why we ignored the issue of variable ordering when
building an ANOVA table for our model of reaction time in video
games versus distance, clutter, and subject-level effects. For that
data set, the predictor variables were independent with each other:
the experimental design was perfectly balanced, with each subject
sitting for exactly 40 trials for each pairwise combination of the
cluttered and distance variables. Regardless of the order in which
we add the variables, we will always get the same ∆PV for each
one. Thus in the absence of dependence among the predictors, we
can uniquely assign credit for predicting the outcome to each one.7

7 For this reason, ANOVA is a com-
monly used tool in the analysis of
designed experiments, when we can en-
sure that the predictors are independent
of one another. It is less common in the
analysis of observational studies, where
the inevitable presence of collinearity
significantly weakens the conclusions
that we can draw from an ANOVA.

Regression models, just like Thanksgiving guests, thrive on
variety—that is, on multiple independent sources of information.





5
Quantifying uncertainty using the bootstrap

Quantifying parameter uncertainty

In coming this far through the book, you’ve already learned
many valuable skills: how to summarize evidence both graphically
and numerically; how to fit basic group-wise and linear statistical
models to data; how to combine grouping and numerical variables;
and how to use these models to explore trends and predict new
outcomes.

But we’re missing a crucial piece of the puzzle. Earlier we de-
fined statistical modeling as the structured quantification of uncer-
tainty. We’ve focused a lot so far on the “structure” part; now we’ll
begin to focus on the “uncertainty” part.

A question that almost always arises in statistical modeling
is: how confident are we in our estimate of an effect size? Take
the following study of a new therapeutic regime for esophogeal
cancer, from the New England Journal of Medicine in 2006:

We randomly assigned patients with resectable adenocar-
cinoma of the stomach, esophagogastric junction, or lower
esophagus to either perioperative chemotherapy and surgery
(250 patients) or surgery alone (253 patients). . . . With a me-
dian follow-up of four years, 149 patients in the perioperative-
chemotherapy group and 170 in the surgery group had died.
As compared with the surgery group, the perioperative-
chemotherapy group had a higher likelihood of overall sur-
vival (five-year survival rate, 36 percent vs. 23 percent).1 1 Cunningham, et. al. “Perioperative

chemotherapy versus surgery alone for
resectable gastroesophageal cancer.”
New England Journal of Medicine, 2006

July 6; 355(1):11-20.

Thus the chemotherapy regime appears to save lives: the rela-
tive risk of survival under chemo is 36/23, or about 1.6. But 1.6
plus-or-minus what? What if the physicians running the trial had
enrolled a different sample of patients? Might the relative risk
have looked more like 1.3 (a smaller effect) or even 1.0 (no effect)?
Chemotherapy has nasty side effects and is very expensive. If
you’re a cancer patient or a Medicare administrator, uncertainty
about the effect size matters.
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We use the phrase statistical inference to describe the framework
and procedures we use to address uncertainty in statistical mod-
els. In this chapter, we’ll approach statistical inference using a
technique called the bootstrap.

Sampling distributions, estimators, and alternate universes

In fitting statistical models, we typically equate the trustworthi-
ness of a procedure with its stability under the influence of luck,
and we seek to measure the degree to which that procedure might
have given a different answer if the forces of randomness had
made the world look a bit different. Specifically, the question we
seek to answer is: “if our data set had been different merely due to
chance, would our answer have been different, too?”

Confidence in
your estimates

⇐⇒ Stability of those estimates
under the influence of chance

You can see why it makes sense to equate stability with trust-
worthiness if you imagine a suspect who gives the police three
different answers to the question, “Where were you last Tuesday
night?” If the story keeps changing, there is little basis for trust.

Sources of instability. One obvious source of instability in our es-
timates is when our observations are subject to random forces.
For example, suppose we wish to characterize the relationship
between SAT score and graduating GPA for the entering class of
2000 at the University of Texas. Figure 5.1 shows the entire rele-
vant population, yet there is still randomness to worry about—for,
as the teacher in Ecclesiastes puts it, “time and chance happeneth
to them all.” If any of these 5,191 students had taken the SAT on
a different day, or eaten a healthier breakfast on the day of their
chemistry finals, we would be looking at a slightly different data
set, and thus a slightly different least-squares line—even if the
underlying SAT–GPA relationship had stayed the same.
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Figure 5.1: Graduating GPA versus
high-school SAT score for all students
who entered UT–Austin in the fall of
2000 and went on to earn a bachelor’s
degree within 6 years. The black line
shows the least-squares fit.

Another source of instability is the effect of sampling variability,
which arises when we’re unable to study the entire population of
interest. The key insight here is that a different sample would have
led to different estimates of the model parameters. Consider the
example above, about the study of a new chemotherapy regime
for esophogeal cancer. If doctors had taken a different sample of
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Figure 5.2: Four different days of
fishing, coded by color, on an imaginary
lake home to a population of 800

fish. On each day’s fishing trip, you
catch 15 fish, and end up estimating
a slightly different weight–volume
relationship. The dashed black line
is the true relationship for the entire
population.

503 cancer patients and gotten a drastically different estimate of
the new treatment’s effect, then the original estimate isn’t very
trustworthy. If, on the other hand, pretty much any sample of 503

patients would have led to the same estimates, then their answer
for this particular subset of 503 is likely to be accurate.

An example: simulating a sampling distribution by Monte Carlo. To
get some intuition for this way of thinking, imagine that you go
on a four-day fishing trip to a lovely small lake out the woods.
The lake is home to a population of 800 fish of varying size and
weight, depicted in Figure 5.2. On each day, you take a random
sample from this population—that is, you catch (and subsequently
release) 15 fish, recording the weight of each one, along with its
length, height, and width (which multiply together to give a rough
estimate of volume). You then use the day’s catch to compute a
different estimate of the volume–weight relationship for the entire
population of fish in the lake. These four different days—and the
four different least-squares fits—show up in different colors in
Figure 5.2.
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Figure 5.3: 2500 days of fishing, to-
gether with the 2500 different estimates
of β0 and β1 (below), simulated by
Monte Carlo.

Four days of fishing give us some idea of how the estimates for
β0 and β1 vary from sample to sample. But 2500 days of fishing,
simulated by computer, give us a better idea. Figure 5.3 shows
just this: 2500 different samples of size 15 from the population,
together with 2500 different least-squares estimates of the weight–
volume relationship. This is an example of a Monte Carlo simula-
tion, in which we run a computer program to repeatedly simulate
a random process (in this case, sampling from a population).
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These pictures show the sampling distribution of the least-squares
line—that is, how the estimates for β0 and β1 change from sample
to sample, shown in histograms in the right margin. In theory,
to know the sampling distributions exactly, we’d need to take an
infinite number of samples, but 2500 gives us a rough idea.

The sampling distribution. To understand the concept of a sam-
pling distribution, it helps to distinguish between an estimator and
an estimate. A good analogy here is that an estimator is to a court
trial as an estimate is to a verdict. Just like a trial is a procedure
for reaching a verdict about guilt or innocence, an estimator is
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Figure 5.4: A stylized depiction of a
sampling distribution of an estimator
θ̂. To construct this distribution, we
must imagine the following thought
experiment. We repeatedly take many
samples (say, 1000) from the population
(step 1a). For each sample, we apply
our estimator to compute the estimate
θ̂(r) (step 1b). At the end, we combine
all the estimates θ̂(1), . . . , θ̂(1000) into
a histogram, and we summarize the
dispersion of that histogram (step 2).
Technically, the sampling distribution
is the distribution of estimates we’d
get with an infinite number of samples,
and the histogram is an approximation
of this distribution. The difference
between the true distribution and the
approximation generated by Monte
Carlo is called Monte Carlo error.

a procedure for reaching an estimate of some population-level
quantity on the basis of a sample. The least-squares procedure
is a specific set of steps (i.e. equations) that one applies to a data
set. The procedure yields estimators β̂0 and β̂1 for the slope and
intercept of a population-wide linear trend; while the values of β̂0

and β̂1 you get for a specific data set are the estimates. An esti-
mator’s sampling distribution is the distribution of results (that is,
the estimates) that one obtains from that estimator under repeated
sampling from a population. Figure 5.4 shows graphically how, in
principle, this distribution is constructed. Concrete examples of an
estimator include the sample mean, the least squares procedure,
and the residual standard deviation.

Good estimators are those that usually yield estimates close to
the truth, with minimal variation. Therefore, we typically summa-
rize a sampling distribution using its standard deviation, which
we refer to as the standard error.2 In quoting the standard error of

2 We are also sometimes interested in
the mean of a sampling distribution. If
the mean of an estimator’s sampling
distribution is equal to the true popu-
lation value, we say that the estimator
is unbiased. This term has a precise
mathematical meaning, but also an
unwarranted connotation of universal
desireability that many statisticians find
problematic. Alas, for historical reasons,
we’re basically stuck with the term.
It turns out that unbiasedness is not
always a good property of an estimator.
There can be very good reasons to use
estimators that we know to be biased.
But that’s for another book.an estimator’s sampling distribution, you are saying: “If I were to

take repeated samples from the population and use this estimator
for every sample, my estimate is typically off from the truth by
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about this much.” Notice again that this is a claim about a proce-
dure, not a particular estimate. The bigger the standard error, the
less stable the estimator across different samples, and the less you
can trust the estimate for any particular sample. To give a specific
example, for the 2500 samples in Figure 5.3, the standard error of
β̂0 is about 50, while the standard error of β̂1 is about 0.5.

Of course, if you really could take repeated samples from the
population, life would be easy. You could simply peer into all
of those alternate universes, tap each version of yourself on the
shoulder, and ask, “What slope and intercept did you get for your
sample?” By tallying up these estimates and seeing how much
they differed from one another, you could discover precisely how
much confidence you should place in your own estimates of β0

and β1, and report appropriate error bars based on the standard
error of your estimator.3 3 Let’s ignore the obvious fact that, if

you had access to all those alternate
universes, you’d also have more data.
The presence of sample-to-sample
variability is the important thing to
focus on here.

Most of the time, however, we’re stuck with one sample, and
one version of reality. We cannot know the actual sampling distri-
bution of our estimator, for the same reason that we cannot peer
into all those other lives we might have lived, but didn’t:

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth. . . .4 4 Robert Frost, The Road Not Taken, 1916.

Quantifying our uncertainty would seem to require knowing all
the roads not taken—an impossible task.

Surprisingly, we can come close to performing the impossible.
There are two ways of feasibly constructing something like the
histogram in Figure 5.4, thereby approximating an estimator’s
sampling distribution without ever taking repeated samples from
the population.

1) Resampling: that is, by pretending that the sample itself is the
population, which allows one to approximate the effect of
sampling variability by resampling from the sample.

2) Parametric probability modeling: that is, by assuming that the
forces of randomness obey certain mathematical regularities,
and by drawing conclusions about these regularities using
probability theory.

In this chapter, we’ll discuss the resampling approach, deferring
the probability-modeling approach to a later chapter.
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Bootstrapping: standard errors through resampling

At the core of the resampling approach to statistical inference lies
a simple idea. Most of the time, we can’t feasibly take repeated
samples of size n from the population, to see how our estimate
changes from one sample to the next. But we can repeatedly take
samples of size n from the sample itself, and apply our estimator
afresh to each notional sample. The idea is that the variability of
the estimates across all these samples can be used to approximate
our estimator’s true sampling distribution.

This process—pretending that our sample is the whole popula-
tion, and taking repeated samples of size n with replacement from
our original sample of size n—is called bootstrap resampling, or just
bootstrapping.5 Each block of n resampled data points is called a 5 The term “bootstrapping” is a

metaphor. It is an old-fashioned phrase
that means performing a complex task
starting from very limited resources.
Imagine trying to climb over a tall
fence. If you don’t have a rope, just
“pull yourself up by your own boot-
straps.”

bootstrapped sample. To bootstrap, we write a computer program
that repeatedly resamples our original sample and recomputes our
estimate for each bootstrapped sample. Modern software makes a
non-issue of the calculational tedium involved.

You may be puzzled by something here. There are n data points
in the original sample. If we repeatedly resample n data points
from our “pseudo-population” of size n, won’t each bootstrapped
sample be identical to the original sample? If so, and every boot-
strapped sample looks the same, then how can this process be
used to simulate sampling variability?

This fact highlights a key requirement of bootstrapping: the re-
sampling must be done with replacement from the original sample,
so that each bootstrapped sample contains duplicates and omis-
sions from the original sample.6 These duplicates and omissions

6 Imagine a lottery drawing, where
there’s a big urn with 60 numbered
balls in it. We want to choose a random
sample of 6 numbers from the urn.
After we choose a ball, we could do one
of two things: 1) put the ball to the side,
or 2) record the number on the ball
and then throw it back into the urn. If
you set the ball aside, it can be selected
only once; this is sampling without
replacement, and it’s what happens in
a real lottery. But if instead you put the
ball back into the urn, it has a chance
of being selected more than once in
the final sample; this is sampling with
replacement, and it’s what we do when
we bootstrap.

induce variation from one bootstrapped sample to the next, mim-
icking the variation you’d expect to see across the real repeated
samples that you can’t take.

To summarize, let’s say we have a data set D, consisting of n
cases. We want to understand how our estimator θ̂ might have
behaved differently with a different sample of size n. To answer
this question using bootstrapping, we follow two main steps.

(1) Repeat the following substeps many times (e.g. 1000 or more):

a. Generate a new bootstrapped sample D(r) by taking n
samples with replacement from D.

b. Apply the estimator θ̂ to the bootstrapped sample D(r) and
save the resulting estimate, θ̂(r).
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Figure 5.5: A stylized depiction of a
bootstrapped sampling distribution of
an estimator θ̂. We have a single origi-
nal sample. We repeatedly take many
bootstrapped samples (say, 1000) from
the original sample (step 1a). For each
resample, we compute the estimator
θ̂ (step 1b). At the end, we combine
all the estimates θ̂(1), . . . , θ̂(1000) into a
histogram of the bootstrapped sampling
distribution, and we summarize the
dispersion of that histogram (step 2).
Compare with Figure 5.4.

(2) Take all of the θ̂(r)’s you’ve generated and make a histogram.
This is your estimate of the sampling distribution.

See Figure 5.5, and compare with Figure 5.4.
Resampling won’t yield the true sampling distribution of an

estimator, but it is often good enough for approximating the stan-
dard error (which you’ll remember is just the standard deviation
of the sampling distribution). We use the term bootstrapped stan-
dard error for the standard deviation of the bootstrapped sampling
distribution. The bootstrapped standard error is an estimate of the
true standard error.

The quality of this estimate depends almost entirely on one
thing: how closely the original sample resembles the wider popu-
lation. This is a question of judgment best answered by someone
with subject-area expertise relevant to the data set at hand. As a
data analyst this often isn’t under your control, and therefore it’s
almost worth remember that the bootstrap is not entirely free of
assumptions. You can’t magic your way to sensible estimates of
the true sampling distribution by bootstrapping a biased, woefully
small, or otherwise poor sample.
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The quality of the Monte Carlo approximation also depends to
a lesser extent on how many bootstrapped samples you take from
the original sample. Simulating more bootstrapped samples help
to reduce the variability inherent in any Monte Carlo simulation—
up to a point. But taking more bootstrapped samples is never a
substitute for having more actual samples in the real data set.
Fundamentally, it is the size of your original sample that governs
the precision of your estimates.

A natural question is: how well does bootstrapping work in
practice? To see the procedure in action, let’s reconsider the least-
squares estimator of the slope (β1) for the weight–volume line
describing the fish in our hypothetical lake. The top row of Figure
5.6 shows three actual sampling distributions, corresponding to
samples of size n = 15, n = 50, and n = 100 from the entire pop-
ulation. These were constructed using the Monte Carlo method
described several pages ago, as depicted in Figures 5.3 and 5.4. For
example, the top left panel (for n = 15) was constructed by tak-
ing 2,500 Monte Carlo samples from the true population in Figure
5.3, and computing the least-squares estimate of the slope for each
sample as in Figure 5.4.

Below each true sampling distribution, we have focused on four
of these 2500 samples. For each of these real samples, we ran the
bootstrapping procedure by 2500 bootstrapped samples from the
original sample of size n, treating it as a pseudo-population. For
each bootstrapped sample, we compute the least-squares line for
weight versus volume. These 2500 estimates of β1 are what you
see in each grey-colored panel of Figure 5.6. For example, the first
grey panel in column 1 corresponds to the bootstrapped sampling
distribution from the first sample of size 15; the second grey panel
corresponds to the bootstrapped sampling distribution from the
second sample of size 15; and so on for the rest of the grey panels.

If bootstrapping were perfect, each grey panel would look ex-
actly like the corresponding orange panel above, regardless of the
same size. But of course, bootstrapping isn’t perfect. If you study
these pictures closely, you’ll notice a few things.

(1) The bootstrapped sampling distribution can differ sub-
stantially from one original sample to the next (top to
bottom). The sample-to-sample differences are larger
when the original sample size is small.

(2) The bootstrapped sampling distribution gets both closer
to the truth, and less variable from one original sample
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Figure 5.6: Actual (top, in orange) and
bootstrapped sampling distributions
(four replications) for the least-squares
estimator of β1 from Figure 5.2.
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to the next, as the original sample size gets larger.
(3) The bootstrapped standard errors (printed next to each

histogram) are often closer to the true standard error
than you might naïvely expect, based on the visual corre-
spondence of the bootstrapped sampling distribution to
the true one.

Confidence intervals and coverage

Now that we’ve learned to approximate an estimator’s sampling
distribution via bootstrapping, what do we do with this informa-
tion? The answer is: we quantify the uncertainty of our estimate
via a confidence interval: a range of plausible values for the true
value of a parameter, together with an associated confidence level
between 0% and 100%. The width of a confidence interval conveys
the precision with which the data have allowed you to estimate
the underlying population parameter. If your interval actually
contains the true population value, we say that the interval covers
the truth. If it doesn’t, the interval fails to cover the truth. In real
life, you won’t know whether your interval covers. The confidence
level expresses how confident you are that it actually does.

There are many ways of generating confidence intervals from
bootstrapped sampling distributions, ranging from the simple
to the highly sophisticated (and mathematically daunting). We’ll
focus on two simple ways here, with the understanding that the
more technical ways we don’t discuss are a bit more accurate.7

7 If you want to get an introduction
to the more technical ways of getting
confidence intervals from the bootstrap,
see the following article: “Bootstrap
confidence intervals: when, which,
what? A practical guide for medical
statisticians.” James Carpenter and
John Bithell. Statistics in Medicine 2000;
19:1141–64.First, there’s the basic standard-error method. Here, you quote

a symmetric error bar centered on the estimate from the origi-
nal sample, plus-or-minus some multiple k of the bootstrapped
standard error. To be precise, let’s say that θ is some population
parameter you’re trying to estimate; that θ̂ is the estimate of θ gen-
erated by your actual sample; and that you’ve run the bootstrap-
ping procedure on your sample and found that the bootstrapped
standard error is σ̂. Your confidence interval would then be

θ ∈ θ̂ ± t?σ̂ ,

where t? is a chosen multiple. This number t? is called the critical
value. It is the number of standard errors you must go out from the
center to capture a certain percentage of the sampling distribution.
Typical values are t? = 1 (for an approximate 68% confidence
interval) and t? = 2 (for an approximate 95% confidence interval).



118 data science

Estimates of !1 from Bootstrapped Samples
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Figure 5.7: The estimated sampling
distribution of β̂1 that arises from
bootstrapping one sample of size 30

from the full fish population. The blue
area reflects an 80% confidence interval
generated by the coverage method, with
symmetric tail areas of 10% above and
10% below the blue area.

The answer to the question of why t? = 1 corresponds to 68%
and t? = 2 to 95% is beyond the scope of this chapter. It has to do
with the normal distribution and something called the central limit
theorem. For now, it is fine if you accept this is an empirical rule
of thumb that statisticians have found gives a good approxima-
tion in situations where your bootstrapped sampling distribution
looks approximately bell-shaped. Some of the more sophisticated
bootstrap techniques, mentioned in Footnote 7, are focused on
improving the choice of t? given by these simple guidelines.

Second, there’s the coverage-interval method, in which you sim-
ply calculate a coverage interval using the quantiles of your boot-
strapped sampling distribution. For example, Figure 5.7 shows the
bootstrapped sampling distribution for the slope of the weight–
volume relationship arising from a single sample of 30 fish from
the same lake as before. If you wanted to compute an 80% con-
fidence interval based on this data, you would calculate the 10th
and 90th percentiles of this histogram, giving you an interval that
contains 80% of the bootstrapped estimates of the slope. In Figure
5.7, this interval is (3.8, 5.1), shown in blue. This example high-
lights that, unlike the intervals generated by the standard-error
method, the intervals generated by the coverage method need
not be symmetric about the estimate θ̂ derived from your actual
sample.

Is one of these two methods better? Not as a general rule. The
coverage-interval approach is more common in practice, and it’s a
fine default option. The most conservative thing to do, assuming
you don’t want to go the very technical8 route, is to compute both 8 See Footnote 7.

and report the wider interval.

What does “confidence” mean?

The word “confidence,” as it is used in the phrase “confidence
interval,” has a notoriously tricky interpretation. To put it con-
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cisely but opaqely, confidence intervals are intervals generated by
a method that satisfies the frequentist coverage principle.

The frequentist coverage principle: If you were to analyze one
data set after another for the rest of your life, and you were to
quote X% confidence intervals for every estimate you made,
those intervals should cover their corresponding true values
at least X% of the time. Here X can be any number between 0

and 100.

Let’s unpack this a bit. Imagine that your interval was gener-
ated with a procedure that, under repeated use on one sample
after the next, tends to yield intervals that cover the true value
with a relative frequency of at least 80%. Then, and only then,
may you claim a bona fide 80% confidence level for your specific
interval. (You may, of course, aim for whatever coverage level you
wish in lieu of 80%. Many people seem stuck on 95%, but it’s en-
tirely your choice.) Thus confidence intervals involve something
of a bait-and-switch: they purport to answer a question about an
individual interval, but instead give you information about some
hypothetical assembly line that could be used to generate a whole
batch of intervals. Nonetheless, there is an appealing “truth in ad-
vertising” property at play here: that if you’re going to claim 80%
confidence, you should be right 80% of the time over the long run.
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!1Figure 5.8: 100 different samples of size
30 from the population in Figure 5.2,
along with each least-squares estimate
of the weight–volume slope, and an
80% bootstrapped confidence interval,
just like that at the top left. Blue dots
show confidence intervals that cover;
red crosses show those that don’t.

An obvious question is: do bootstrapped confidence intervals
satisfy the frequentist coverage property? If your sample is fairly
representative of the population, then the answer is a qualified yes.
That is, the bootstrapping procedure yields nominal X% intervals
that cover the true value “approximately” X% of the time. More-
over, as the size of the original sample gets bigger, the quality of
the approximation gets better. Alas, it is necessary to appeal to
some very advanced probability theory to put both of these claims
on firm footing. (This is best deferred to another, much more ad-
vanced book. For those that like fancy math, the relevant branch of
probability theory is called empirical-process theory, which part of
a wider area called stochastic processes.)

For our purposes, it is better to show the procedure in action.
Figure 5.8, for example, depicts the results of running 100,000

regressions—1,000 bootstrapped samples for each of 100 different
real samples from the population in Figure 5.2. The vertical black
line shows the true population value of the weight–volume slope
(β1 = 4.24) for our population of fish. Each row corresponds to a
different actual sample of size n = 30 from the population. Dots



120 data science

and crosses indicate the least-squares estimate of the slope arising
from that sample, while the grey bars show the corresponding
80% bootstrapped confidence intervals generated by the coverage
method (just like the blue region in Figure 5.7).

The nominal confidence level of 80% for each individual inter-
val must be construed as a claim about the whole ensemble of 100

intervals: 80% should cover, 20% shouldn’t. In fact, 83 of these
intervals cover and 17 don’t, so the claim is approximately correct.

Gaussian versus bootstrapped confidence intervals

Most statistical software packages have built-in routines for cal-
culating standard errors and confidence intervals, and will show
them as part of a routine summary output for a regression model.
For example, in R, the summary and confint functions do just this.

Chances are, however, that the package you use is not using
the bootstrap to calculate these confidence intervals. So what is
it doing instead? The full answer to this question turns out to be
rather long and drawn-out, and we’ll return to it in a later chapter.
But we can give a quick summary here.

The short answer is that your statistical software is calculat-
ing Gaussian standard errors and confidence intervals, which are
based on the assumption that the residuals in the regression model
follow a Gaussian, or normal, distribution:

yi = β0 + β1xi + ei

ei ∼ N(0, σ2) . (5.1)

s The first equation is familiar: observation = fitted value + resid-
ual. But the second equation is new. It invokes an assumption that
we never needed to make before: that the residuals ei arise from
a normal distribution with mean 0 and variance σ2. In fact, this
assumption long predated the use of the bootstrap to calculate
confidence intervals in regression modeling, and it is embedded
in most statistical software today. Gaussian standard errors are
sometimes numerically similar to bootstrapped standard errors,
but they are not calculated in the same way.

There are three obvious questions that arise in conjuction with
this assumption.

(1) Huh? How does the assumption of normally distributed resid-
uals let us calculate standard errors and confidence intervals?



quantifying uncertainty using the bootstrap 121

(2) This seems useless and kind of goofy. Why bother with this
assumption? That is, under what circumstances would we use
this assumption to calculate confidence intervals and standard
errors, as opposed to the bootstrapping technique that we’ve
already learned?

(3) OK, fine. But how do we check whether the assumption of
normally distributed residuals is satisfied for some particular
data set?

Here are some very brief answers to these three questions.

(1) How does this even work? Using probability theory, it is possi-
ble to mathematically derive formulas for standard errors and
confidence intervals, based on the assumption of normally
distributed residuals. The math, which exploits the nice prop-
erties of the normal distribution, isn’t actually hard. But you
do have to know a bit of probability theory to understand it.
Moreover, the math is tedious, with lots of algebra; and it’s
just not that important, in the sense that it will add little to
your conceptual understanding of regression. So we’ll skip the
math for now, and trust that our software has implemented it
correctly. If you’re really interested, turn to the chapter on the
normal linear regression model, later in the book.

(2) Why bother with this assumption? There are several possible an-
swers here. The simplest one, and the one we’ll go with for
now, is that the Gaussian standard errors are often a good ap-
proximation to the bootstrapped standard errors—assuming
the normality assumption is met (see point 2, above). More-
over, the Gaussian standard errors take our software a lot less
time to calculate, because they don’t require us to resample
the data set and refit the model thousands of times. So if your
data set is very large and bootstrapping would take a pro-
hibitively long time—or even if bootstrapping is just giving
you strange software bugs—then the Gaussian standard errors
and confidence intervals might be your next-best option.

(3) How can we check the normality assumption? Just make a his-
togram of your residuals. If they look like a normal distribu-
tion, then the normality assumption is probably reasonable. If
they don’t, then you should stick with bootstrapped standard
errors if you can. For example, Figure 5.9 shows three exam-
ples of regression models, together with a histogram of the
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residuals. The top panel looks approximately normal, while
the middle and bottom panels obviously don’t. As a result, for
the data sets in the middle and bottom panels, we can’t nec-
essarily trust the Gaussian confidence intervals; they may be a
case of “garbage in, garbage out.”9 9 This is an oversimplification. Even

if the residuals don’t look Gaussian,
the Gaussian confidence intervals can
still be approximately correct, because
of something called the central limit
theorem. But this topic is for a much
more advanced treatment of regression
analysis.

We’ll elaborate on these much more in a later chapter. For the
time being, it’s fine to think of the confidence intervals returned by
regression software as just an approximation to the bootstrapped
confidence intervals you’ve become familiar with.

Bootstrapped prediction intervals (advanced topic)

Recall the problem of forecasting a future y? corresponding to
some predictor x?, using past data as a guide. (For example, how
much should a used truck with 80,000 miles cost? How much can
an Austin restaurant with a food rating of 7.5 charge for a meal?)
Previously, we were content to quote a prediction interval of the
form

ŷ? ∈ β̂0 + β̂1x? ± se ,

or the best guess, plus-or-minus one residual standard deviation.
(We could, if we wish, also go out two residual standard devia-
tions to get a wider interval that covered more of the data.)

These prediction intervals are good enough for most purposes.
However, when we introduced them, we point that they were a
bit naïve, because of how they ignore uncertainty in our estimates
for β0 and β1. For example, imagine that you work for a major
metropolitan newspaper with a daily (Monday–Friday) circulation
of 200,000 newspapers, and that your employer is contemplating a
new weekend edition. You could certainly use the data in Figure
5.10, which correlates Sunday circulation with daily circulation for
34 major metropolitan newspapers, to inform your guess about
the new Sunday edition’s likely circulation. But the available data
don’t pin down β0 and β1 for sure; we have some uncertainty
about the true values for these parameters. The kind of basic or
naïve prediction interval that we’ve constructed until now will
mask these sources of uncertainty, which may be large.

Luckily, now that we understand the logic of the bootstrap,
we can try to account for this extra uncertainty. Suppose we have
some value of the predictor x?, and we want to form a predic-
tion interval for the corresponding value of the response, y?. The
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idea is to break down our uncertainty about y? into its constituent
parts—uncertainty due to lack of perfect knowledge about the pa-
rameters, and uncertainty about the residual. The key equation is
that y? = ŷ? + e?, or future data point = point estimate + residual.
We will use bootstrapping to approximate the uncertainty in each
of these two terms individually.

To do so, we repeat the following steps a few thousand times.

(1) Take a single bootstrapped sample from the original sample,
and compute the least-squares estimates β̂

(r)
0 and β̂

(r)
1 . This

gives you your best guess for the future y?, given the informa-
tion in the bootstrapped sample:

ŷ(r) = β̂
(r)
0 + β̂

(r)
1 x? .

Here the superscript r denotes the rth bootstrap sample.

(2) Sample a residual e(r) at random from the bootstrapped least-
squares fit, to mimic the unpredictable variation in the model.

(3) Set y(r) = ŷ(r) + e(r). This is your notional “future y” for the rth

bootstrapped sample.

In step 1, we simulate the uncertainty in ŷ by using different pa-
rameter estimates β

(r)
0 and β

(r)
1 each time through the three-step

loop. In step 2, we simulate the uncertainty in e, the future resid-
ual, by resampling the residuals from the model fit in step 1. Fi-
nally, in step 3, we combine these two sources of uncertainty to
form the notional future data point, y(r) = ŷ(r) + e(r).

By repeating this process many thousands of times, we can
build up a distribution of values for y?. If you take the standard
deviation of all those y(r)’s, you can directly quantify the uncer-
tainty in your prediction corresponding to x?—for example, by
quoting the dark- and light-grey prediction intervals in Figure
5.10, which stretch to one and two standard deviations (respec-
tively) on either side of the least-squares line.

One noticeable feature of the bootstrapped prediction intervals
is the way they bend outwards as they get further away from the
center of the sample. This is a bit hard to see in the top panel of
Figure 5.10. To show this effect more clearly, the bottom panel
explicitly plots the half-width of the dark grey bootstrapped pre-
diction intervals at 109 different hypothetical X points: every in-
crement of 10,000 newspapers across the entire range of daily
circulation, from 130,000 to 1.2 million.
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  1 Baltimore Sun
  2 Boston Globe
  3 Boston Herald
  4 Charlotte Observer
  5 Chicago Sun-Times
  6 Chicago Tribune
  7 Cincinnati Enquirer
  8 Denver Post
  9 Des Moines Register
10 Hartford Courant
11 Houston Chronicle
12 Kansas City Star
13 Los Angeles Daily News
14 Los Angeles Times
15 Miami Herald
16 Minneapolis Star-Tribune
17 New Orleans Times-Picayune
18 New York Daily News
19 New York Times
20 Newsday
21 Omaha World Herald
22 Orange County Register
23 Philadelphia Inquirer
24 Pittsburgh Press
25 Portland Oregonian
26 Providence Journal Bulletin
27 Rochester Democrat Chronicle
28 Rocky Mountain News
29 Sacramento Bee
30 San Francisco Chronicle
31 St Louis Post-Dispatch
32 St. Paul Pioneer Press
33 Tampa Tribune
34 Washington Post
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Figure 5.10: Sunday circulation versus
daily circulation for 34 major metropoli-
tan newspapers, together with one- and
two-standard-deviation bootstrapped
prediction intervals across the range of
the X variable (top panel). Also shown
is the half-width of the darker-grey
prediction interval across the range of
X (bottom panel), versus the half-width
of the naïve prediction interval, shown
by the dotted blue line.

You’ll notice that the pink dots
marking the half-width of each boot-
strapped prediction interval wiggle up
and down a bit from the black curve.
This happens because we only took
2,500 bootstrap samples, which pro-
duces a bit of unwanted noise. Taking
more bootstrapped samples would
make the pink points fall closer to the
black curve, but it wouldn’t shift the
black curve up or down.

The black curve shows an unmistakeable trend. Prediction
uncertainty increases when you move away from the mean of X.
Figure 5.3, several pages earlier, will give you some intuition for
why this is so: small differences in the slope get magnified when
you move further away from the middle of the sample. The naïve
prediction interval fails to capture this effect entirely. On this
problem, for example, the naïve interval understates prediction
uncertainty by 10,000 newspapers or more for large values of X.

A final point worth noting: all of the previous warnings about
bootstrapped standard errors also apply to bootstrapped pre-
diction intervals. If the observed data is unrepresentative of the
population, bootstrapping will mislead rather than inform.
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From lines to planes

Linear regression, as we’ve learned, is a powerful tool for finding
patterns in data. So far, we’ve only considered models that involve
a single numerical predictor, together with as many grouping
variables as we want. These grouping variables were allowed to
modulate the intercept, or both the slope and intercept, of the
underlying relationship between the numerical predictor (like
SAT score) and the response (like GPA). This allowed us to fit
different lines to different groups, all within the context of a single
regression equation.

In this chapter, we learn how to build more complex models
that incorporate two or more numerical predictors. For example,
consider the data in Figure 6.1 on page 128, which shows the high-
way gas mileage versus engine displacement (in liters) and weight
(in pounds) for 59 different sport-utility vehicles.1 The data points 1 These are the same SUVs shown in the

second-from-right panel in FIgure 4.9,
when we discussed ANOVA for models
involving correlated predictors.

in the first panel are arranged in a three-dimensional point cloud,
where the three coordinates (xi1, xi2, yi) for vehicle i are:

• xi1, engine displacement, increasing from left to right.

• xi2, weight, increasing from foreground to background.

• yi, highway gas mileage, increasing from bottom to top.

Since it can be hard to show a 3D cloud of points on a 2D page, a
color scale has been added to encode the height of each point in
the y direction.

Fitting a linear equation for y versus x1 and x2 results in a re-
gression model of the following form:

yi = β0 + β1xi1 + β2xi2 + ei .

Just as before, we call the β’s the coefficients of the model and the
ei’s the residuals. In Figure 6.1, this fitted equation is

MPG = 33− 1.35 ·Displacement− 0.00164 ·Weight + Residual .
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Figure 6.1: Highway gas mileage versus
weight and engine displacement for 59

SUVs, with the least-squares fit shown
in the bottom panel.
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Both coefficients are negative, showing that gas mileage gets worse
with increasing weight and engine displacement.

This equation is called a multiple regression model. In geometric
terms, it describes a plane passing through a three-dimensional
cloud of points, which we can see slicing roughly through the mid-
dle of the points in the bottom panel in Figure 6.1. This plane has
a similar interpretation as the line did in a simple one-dimensional
linear regression. If you read off the height of the plane along the
y axis, then you know where the response variable is expected to
be, on average, for a particular pair of values (x1, x2).

In more than two dimensions. In principle, there’s no reason to stop
at two predictors. We can easily generalize this idea to fit regres-
sion equations using p different predictors xi = (xi,1, xi,2, . . . , xi,p):

We use a bolded xi as shorthand to
denote the whole vector of predic-
tor values for observation i. That
way we don’t have to write out
(xi,1, xi,2, . . . , xi,p) every time. When
writing things out by hand, a little
arrow can be used instead, since you
obviously can’t write things in bold:
~xi = (xi,1, xi,2, . . . , xi,p). By the same
logic, we also write ~β for the vector
(β0, β1, . . . , βp).

ŷi = β0 + β1xi,1 + β2xi,2 + · · ·+ βpxi,p = β0 +
p

∑
k=1

βkxi,k .

This is the equation of a p-dimensional plane embedded in (p+ 1)-
dimensional space. This plane is nearly impossible to visualize
beyond p = 2, but straightforward to describe mathematically.

From simple to multiple regression: what stays the same. In this jump
from the familiar (straight lines in two dimensions) to the foreign
(planes in arbitrary dimensions), it helps to start out by catalogu-
ing several important features that don’t change.

First, we still fit parameters of the model using the principle of
least squares. As before, we will denote our estimates by β̂0, β̂1,
β̂2, and so on. For a given choice of these coefficients, and a given
point in predictor space, the fitted value of y is

ŷi = β̂0 + β̂1xi,1 + β̂2xi,2 + · · ·+ β̂pxi,p .

This is a scalar quantity, even though the regression parameters
describe a p-dimensional hyperplane. Therefore, we can define the
residual sum of squares in the same way as before, as the sum of
squared differences between fitted and observed values:

n

∑
i=1

e2
i =

n

∑
i=1

(yi− ŷi)
2 =

n

∑
i=1

{
yi − (β̂0 + β̂1xi,1 + β̂2xi,2 + · · ·+ β̂pxi,p)

}2
.

The principle of least squares prescribes that we should choose the
estimates so as to make the residual sum of squares as small as
possible, thereby distributing the “misses” among the observations
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in a roughly equal fashion. Just as before, the little ei is the amount
by which the fitted plane misses the actual observation yi.

Second, these residuals still have the same interpretation as
before: as the part of y that is unexplained by the predictors. For
a least-squares fit, the residuals will be uncorrelated with each
of the original predictors. Thus we can interpret ei = yi − ŷi

as a statistically adjusted quantity: the y variable, adjusted for
the systematic relationship between y and all of the x’s in the
regression equation. Here, as before, statistical adjustment just
means subtraction.

Third, we still summarize preciseness of fit using R2, which has
the same definition as before:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 = 1− UV

TV
=

PV
TV

.

The only difference is that ŷi is now a function of more than just
an intercept and a single slope. Also, just as before, it will still
be the case R2 is the square of the correlation coefficient between
yi and ŷi. It will not, however, be expressible as the correlation
between y and any of the original predictors, since we now have
more than one predictor to account for. (Indeed, R2 is a natural
generalization of Pearson’s r for measuring correlation between
one response and a whole basket of predictors.)

Finally, we still estimate the residual standard deviation using
the same formula as before:

se =

√
1

n− p

n

∑
i=1

(yi − ŷi)2 .

One slightly tricky thing to keep in mind is that p refers to the
number of free parameters in the model. So in the model for
mileage versus engine size and weight, we have p = 3: an in-
tercept (β0), an engine-size coefficient (β1) and a weight coefficient
(β2). Your regression software should keep track of this for you.

Multiple regression and partial relationships

Not everything about our inferential process stays the same when
we move from lines to planes. We will focus more on some of
the differences later, but for now, we’ll mention a major one: the
interpretation of each β coefficient is no longer quite so simple as
the interpretation of the slope in one-variable linear regression.
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The best way to think of β̂k is as an estimated partial slope: that
is, the change in y associated with a one-unit change in xk, holding
all other variables constant. This is a subtle interpretation that is
worth considering at length. To understand it, it helps to isolate
the contribution of xk on the right-hand side of the regression
equation. For example, suppose we have two numerical predictors,
and we want to interpret the coefficient associated with x2. Our
equation is

yi︸︷︷︸
Response

= β0 + β1xi1︸ ︷︷ ︸
Effect of x1

+ β2xi2︸ ︷︷ ︸
Effect of x2

+ ei︸︷︷︸
Residual

.

To interpret the effect of the x2 variable, we isolate that part of the
equation on the right-hand side, by subtracting the contribution of
x1 from both sides:

yi − β1xi1︸ ︷︷ ︸
Response, adjusted for x1

= β0 + β2xi2︸ ︷︷ ︸
Regression on x2

+ ei︸︷︷︸
Residual

.

On the left-hand side, we have something familiar from one-
variable linear regression: the y variable, adjusted for the effect
of x1. If it weren’t for the x2 variable, this would just be the resid-
ual in a one-variable regression model. Thus we might call this
term a partial residual.

On the right-hand side we also have something familiar: an or-
dinary one-dimensional regression equation with x2 as a predictor.
We know how to interpret this as well: the slope of a linear regres-
sion quantifies the change of the left-hand side that we expect to
see with a one-unit change in the predictor (here, x2). But here the
left-hand side isn’t y; it is y, adjusted for x1. We therefore conclude
that β2 is the change in y, once we adjust for the changes in y due to
x1, that we expect to see with a one-unit change in the x2 variable.

This same line of reasoning can allow us to interpret β1 as well:

yi − β2xi2︸ ︷︷ ︸
Response, adjusted for x2

= β0 + β1xi1︸ ︷︷ ︸
Regression on x1

+ ei︸︷︷︸
Residual

.

Thus β1 is the change in y, once we adjust for the changes in y due to
x2, that we expect to see with a one-unit change in the x1 variable.

We can make the same argument in any multiple regression
model involving two or more predictors, which we recall takes the
form

yi = β0 +
p

∑
k=1

βkxi,k + ei .
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To interpret the coefficient on the jth predictor, we isolate it on the
right-hand side:

yi −∑
k 6=j

βkxi,k︸ ︷︷ ︸
Response adjusted for all other x’s

= β0 + β jxij︸ ︷︷ ︸
Regression on xj

+ ei︸︷︷︸
Residual

.

Thus β j represents the rate of change in y associated with one-
unit change in xj, after adjusting for all the changes in y that can
be predicted by the other predictor variables.

Partial versus overall relationships. A multiple regression equa-
tion isolates a set of partial relationships between y and each of the
predictor variables. By a partial relationship, we mean the rela-
tionship between y and a single variable x, holding other variables
constant. The partial relationship between y and x is very differ-
ent than the overall relationship between y and x, because the latter
ignores the effects of the other variables. When the two predictor
variables are correlated, this difference matters a great deal.

To compare these two types of relationships, let’s take the multi-
ple regression model we fit to the data on SUVs in Figure 6.1:

MPG = 33− 1.35 ·Displacement− 0.00164 ·Weight + Residual .

This model isolates two partial relationships:

• We expect highway gas mileage to decrease by 1.35 MPG for
every 1-liter increase in engine displacement, after adjusting
for the simultaneous effect of vehicle weight on mileage. That
is, if we held weight constant and increased the engine size
by 1 liter, we’d expect mileage to go down by 1.35 MPG.

• We expect highway gas mileage to decrease by 1.64 MPG for
every additional 1,000 pounds of vehicle weight, after ad-
justing for the simultaneous effect of engine displacement on
gas mileage. That is, if we held engine displacement constant
and added 1,000 pounds of weight to an SUV, we’d expect
mileage to go down by 1.64 MPG.

Let’s compare these partial relationships with the overall rela-
tionships depicted in Figure 6.2. Here we’ve fit two separate one-
variable regression models: mileage versus engine displacement
on the left, and mileage versus vehicle weight on the right.
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Figure 6.2: Overall relationships for
highway gas mileage versus weight and
engine displacement individually.Focus on the left panel of Figure 6.2 first. The least-squares fit to

the data is

MPG = 30.3− 2.5 ·Displacement + Residual .

Thus when displacement goes up by 1 liter, we expect mileage to
go down by 2.5 MPG. This overall slope is quite different from the
partial slope of −1.35 isolated by the multiple regression equation.
That’s because this model doesn’t attempt to adjust for the effects
of vehicle weight. Because weight is correlated with engine dis-
placement, we get a steeper estimate for the overall relationship
than for the partial relationship: for cars where engine displace-
ment is larger, weight also tends to be larger, and the correspond-
ing effect on the y variable isn’t controlled for in the left panel.

Similarly, the overall relationship between mileage and weight is

MPG = 34.5− 0.0031 ·Weight + Residual .

The overall slope of −0.0031 is nearly twice as steep the partial
slope of −0.00164. The one-variable regression model hasn’t suc-
cessfully isolated the marginal effect of increased weight from
that of increased engine displacement. But the multiple regression
model has—and once we hold engine displacement constant, the
marginal effect of increased weight on mileage looks smaller.
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Figure 6.3: A lattice plot of mileage
versus weight, stratified by engine dis-
placement. The blue points within each
panel show only the SUVs within a
specific range of engine displacements:
≤ 3 liters on the left, 3–4.5 liters in the
middle, and > 4.5 liters on the right.
The blue line shows the least-squares
fit to the blue points alone within each
panel. For reference, the entire data set
is also shown in each panel (pink dots),
together with the overall fit (red line)
from the right-hand side of Figure 6.2.
The blue lines are shallower than the
red line, suggesting that once we hold
engine displacement approximately
(thought not perfectly) constant, we
estimate a different (less steep) relation-
ship between mileage and weight.

Figure 6.3 provides some intuition here about the difference
between an overall and a partial relationship. The figure shows
a lattice plot where the panels correspond to different strata of
engine displacement: 2–3 liters, 3–4.5 liters, and 4.5–6 liters. Within
each stratum, engine displacement doesn’t vary by much—that is,
it is approximately held constant. Each panel in the figure shows
a straight line fit that is specific to the SUVs in each stratum (blue
dots and line), together with the overall linear fit to the whole data
set (red dots and line).

The two important things to notice here are the following.

(1) The SUVs within each stratum of engine displacement are in
systematically different parts of the x–y plane. For the most
part, the smaller engines are in the upper left, the middle-
size engines are in the middle, and the bigger engines are
in the bottom right. When weight varies, displacement also
varies, and each of these variables have an effect on mileage.
Another way of saying this is that engine displacement is a
confounding variable for the relationship between mileage and
weight. A confounder is something that is correlated with both
the predictor and response.

(2) In each panel, the blue line has a shallower slope than the red
line. That is, when we compare SUVs that are similar in engine
displacement, the mileage–weight relationship is not as steep
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as it is when we compare SUVs with very different engine
displacements.

This second point—that when we hold displacement roughly
constant, we get a shallower slope for mileage versus weight—
explains why the partial relationship estimated by the multiple
regression model is different than the overall relationship from
the left panel of Figure 6.2.2 The slope of −1.64× 10−3 MPG per 2 This is a very general property of re-

gression: if x1 and x2 are two correlated
(collinear) predictors, then adding x2 to
the model will change the coefficient on
x1, compared to a model with x1 alone.

pound from the multiple regression model addresses the question:
how fast should we expect mileage to change when we compare
SUVs with different weights, but with the same engine displace-
ment? This is similar to the question answered by the blue lines in
Figure 6.3, but different than the question answer by the red line.

It is important to keep in mind that this “isolation” or “adjust-
ment” is statistical in nature, rather than experimental. Most real-
world systems simply don’t have isolated variables. Confounding
tends to be the rule, rather than the exception. The only real way
to isolate a single factor is to run an experiment that actively ma-
nipulates the value of one predictor, holding the others constant,
and to see how these changes affect y. Still, using a multiple-
regression model to perform a statistical adjustment is often the
best we can do when facing questions about partial relationships
that, for whatever reason, aren’t amenable to experimentation.

Using multiple regression to address real-world questions

While there are many possible uses of multiple regression, most
applications will fall into one of two categories:

(1) Isolating a partial relationship between the response and a
predictor of interest, adjusting for possible confounders.

(2) Building a predictive model for forecasting the response, using
all available sources of information.

In the rest of this chapter, we’ll see examples in each category.
As a case study, we’ll use a running example on house prices from
Saratoga County, New York, distributed as part of the mosaic R
package. We’ll show how, together with multiple regression, this
data set can be used to address a few interesting questions of the
kind that might be relevant to anyone buying, selling, or assessing
the taxable value of a house.
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Figure 6.4: The relationship between
the price of a house and the number of
fireplaces it has.How much is a fireplace worth?

Our first question is: how much does a fireplace improve the
value of a house for sale? Figure 6.4 would seem to say: by about
$66,700 per fireplace. This dot plot shows the sale price of houses
in Saratoga County, NY that were on the market in 2006.3 We also

3 Data from “House Price Capitalization
of Education by Part Year Residents,”
by Candice Corvetti. Williams College
honors thesis, 2007, available here, and
in the mosaic R package.

see a linear regression model for house price versus number of
fireplaces, leading to the equation

Price = $171800 + 66, 700 · Fireplaces + Residual ,

This fitted equation is shown as a blue line in Figure 6.4. The
means of the individual groups (1 fireplace, 2 fireplaces, etc) are
also shown as blue dots. This helps us to verify that the assump-
tion of linearity is reasonable here: the line passes almost right
through the group means, except the one for houses with four
fireplaces (which corresponds to just two houses).

But before you go knocking a hole in your ceiling and hiring a

http://web.williams.edu/Economics/Honors/2007/Corvetti%20-%20Thesis%20-%20May%208.pdf
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Figure 6.5: The relationship of house
price with living area (bottom left)
and with the logarithm of lot size in
acres (bottom right). Both of these
variables are potential confounders for
the relationship between fireplaces and
price, because they are also correlated
with the number of fireplaces (top row).
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bricklayer so that you might cash in on your new fireplace, consult
Figure 6.5 on page 137. This figure shows that we should be care-
ful in interpreting the figure of $66,700 per fireplace arising from
the simple one-variable model. Specifically, it shows that houses
with more fireplaces also tend to be bigger (top left panel) and to
sit on lots that have more land area (top right). These factors are
also correlated with the price of a house.

Thus we have two possible explanations for the relationship we
see in Figure 6.4. This correlation may happen because fireplaces
are so valuable. On the other hand, it may instead (or also) happen
because fireplaces happen to occur more frequently in houses
that are desireable for other reasons (i.e. they are bigger). This is
confounding again: when some third variable is correlated with
both the response and the predictor of interest.

Disentangling these two possibilities requires estimating the
partial relationship between fireplaces and prices, rather than the
overall relationship shown in Figure 6.4. After all, when someone
like a realtor or the county tax assessor asks how much a fireplace
is worth, what they really want to know is: how much is a fire-
place worth, holding other relevant features of the house constant?

To address this question, we can fit a multiple regression model
for price versus living area, lot size, and number of fireplaces. This
will allow us to estimate the partial relationship between fireplaces
and price, holding square footage and lot size constant. Such a
model can tell us how much more we should expect a house with
a fireplace to be worth, compared to a house that is identical in
size and acreage but without a fireplace.

Fitting such a model to the data from Saratoga County yields
the following equation:

Price = $17787+ 108.3 ·SqFt+ 1257 · log(Acres)+ 8783 ·Fireplaces+Residual .
(6.1)

According to this model, the value of one extra fireplace is
about $8,783, holding square footage and lot size constant. This is
a much lower figure than the $66,700 fireplace premium that we
would naïvely estimate from the overall relationship in Figure 6.4.

The example emphasizes the use of multiple regression to ad-
just statistically for the effect of confounders, by estimating a par-
tial relationship between the response and the predictor of interest.
This is one of the most useful real-world applications of regression
modeling, and we’ll see many similar examples. In general, the
advice is: if you want to estimate a partial relationship, make sure
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Figure 6.6: Bootstrapped estimates for
the sampling distributions of the partial
slopes for number of fireplaces (left)
and square footage (right) from the
model in Equation 6.1 on page 138. The
least-squares estimates are shown as
vertical red lines.

you include the potential confounders in the model.

Uncertainty quantification

We can use bootstrapping to get confidence intervals for partial
relationships in a multiple regression model, just as we do in a
one-variable regression model.

The left panel of Figure 6.6 shows the bootstrapped estimate
of the sampling distribution for the fireplace coefficient in our
multiple regression model. The 95% confidence interval here is
(1095, 16380). Thus while we do have some uncertainty we have
about the value of a fireplace, we can definitively rule out the
number estimated using the overall relationship from Figure 6.4.
If the county tax assessor wanted to value your new fireplace at
$66,700 for property-tax purposes, Figure 6.6 would make a good
argument in your appeal.4 4 At a 2% property tax rate, this might

save you over $1000 a year in taxes.The right-hand side of Figure 6.6 shows the bootstrapped sam-
pling distribution for the square-foot coefficient. While this wasn’t
the focus of our analysis here, it’s interesting to know that an addi-
tional square foot improves the value of a property by about $108,
plus or minus about $8.

Model checking

However, before we put too much faith in the conclusions of your
fitted model, it’s important to check whether the assumption of a
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Figure 6.7: Left: model residuals versus
number of fireplaces. Right: observed
house prices versus fitted house prices
from the multiple regression model.

linear regression model is appropriate in the first place. We call
this step model checking. We’ll learn a lot more about model check-
ing later, but for now we’ll cover the most basic step: validating
that the response varies linearly with the predictors.

In one-variable regression models, we addressed this question
using a plot of the residuals ei versus the original predictor xi.
This allowed us to check whether there was still a pattern in the
residuals that suggested a nonlinear relationship between the
predictor and response. There are two ways to extend the idea of a
residual plot to multiple regression models:

• plotting the residuals versus each of the predictors xij in-
dividually. This allows us to check whether the response
changes linearly as a function of the jth predictor.

• plotting the actual values yi versus the fitted values ŷi and
looking for nonlinearities. This allows us to check whether
the responses depart in a systematically nonlinear way from
the model predictions.

Figure 6.7 shows an example of each plot. The left panel shows
each the residual for each house versus the number of fireplaces
it contains. Overall, this plot looks healthy: there are no obvious
departures from linearity. The one caveat is that the predictions for
houses with four fireplaces may be too low, which we can see from
the fact that the mean residual for four-fireplace houses is positive.
Then again, there are only two such houses, making it difficult to
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Figure 6.8: A copy of Figure 2.7 from
the unit on nonlinear curve-fitting.

draw a firm conclusion here. We probably shouldn’t change our
model just to chase a better fit for two (very unusual) houses out
of 1,726. But we should also recognize that our model might not
be great at predicting the price for a house with four fireplaces,
simply because it would involve extrapolation: we don’t have a lot
of data that can inform us about these houses.

The right panel of Figure 6.7 shows a plot of yi versus ŷi. This
also looks like a nice linear relationship, giving us further confi-
dence that our model isn’t severely distorting the true relationship
between predictors and response. In a large multiple regression
model with many predictors, it may be tedious to look at ei versus
each of those predictors individually. In such cases, a plot of yi

versus ŷi should be the first thing you examine to check for nonlin-
earities in the overall fit.

What would an unhealthy residual plot look like? To see an
example, recall Figure 2.7 from the data set on gas consumption
versus temperature, on page 44 (reproduced in Figure 6.8). Notice
the pattern in the residual plot in the right panel:

• Below 20 degrees, the residuals are systematically above zero.
• Between 40 and 60 degrees, the residuals are below zero.
• Above 65 degrees, the residuals are again above zero.

The residuals should look like a random cloud centered around
zero, and the fact that they don’t suggests nonlinearity in the data.

In the case of the house-price model, imagine that we saw that
the residuals for houses with no fireplace were systematically
above zero, while the residuals for houses with one fireplace were
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systematically below zero. This would suggest a nonlinear effect
that our model hasn’t captured. Of course, we don’t see these
things, which gives credence to the linear model.

How much is gas heating worth? Grouping variables in multiple regression

Saratoga, NY is cold in the winter: the average January day has
a low of 13

◦ F and a high of 31
◦ F. As you might imagine, resi-

dents spend a fair amount of money heating their homes, and are
sensitive to the cost differences between gas, electric, and fuel-oil
heaters. Figure 6.9 suggests that the Saratoga real-estate market
puts a big premium for houses with gas heaters (mean price of
$228,000) versus those with electric or fuel-oil heaters (mean prices
of $165,000 and $189,000, respectively). One possible reason is that
gas heaters are cheaper to run and maintain.

But this figure shows an overall relationship. What does the
story look like when we adjust for the effect of living area, lot
size, and the number of fireplaces? There could be a confounding
effect here. For example, maybe the bigger houses tend to have gas
heaters more frequently than the small houses, or maybe fireplaces
are used more in homes with expensive-to-use heating systems.

Remember: if you want to isolate a partial relationship, include
potential confounders in the model. We’ll do this here by includ-
ing two sets of terms: (1) dummy variables for heating-system
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Variable Estimate Std. Error 2.5% 97.5%

Intercept 29868 6743 16644 43093

livingArea 105 3 99 112

log(lotSize) 2705 1913 -1047 6457

fireplaces 7547 3348 980 14113

fuel=electric -14010 4471 -22778 -5242

fuel=oil -15879 5295 -26265 -5494

Table 6.1: Coefficients, standard errors,
and 95% confidence intervals for the
multiple regression model for house
price (y) versus living area, log of lot
size, number of fireplaces, and heating
system type.

type, to model the partial relationship of interest; and (2) all the
possible confounding variables that we had in our previous re-
gression equation (on page 138), which includes living area, lot
size, and number of fireplaces. Fitting this model by least squares
yields the following equation:

Price = $29868 + 105.3 · SqFt + 2705 · log(lotSize) + 7546 · Fireplaces

− 14010 · 1{fuel = electric} − 15879 · 1{fuel = oil} + Residual .

The full table of coefficients, standard errors, and 95% confidence
intervals is in Table 6.1. The baseline here is gas heating, since it
has no dummy variable.

Notice how the coefficients on the dummy variables for the
other two types of heating systems shift the entire regression equa-
tion up or down. This model estimates the premium associated
with gas heating to be about $14,000 ± 4500 over electric heating
(estimate, plus-or-minus one standard error), and about $16,000 ±
5300 over fuel-oil heating. Because these are terms in a multiple
regression model, these numbers represent partial relationships,
adjusting for size, lot acreage, and number of fireplaces.

Assessing statistical significance

A question that often comes up in multiple regression is whether
a particular term in the model is “statistically significant” at some
specified level (e.g. 5%). All this means is whether zero is a plau-
sible value for that partial slope in the model. Remember, a coef-
ficient of zero means that there is no partial relationship between
the response and the corresponding predictor, adjusting for the
other terms in the model. So when we say that a predictor is statis-
tically significant, all we mean is that it we think it has a nonzero
(partial) relationship with the response.

We’ll take up the question of assessing statistical significance
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in much more detail in the chapters to come. But here are a few
quick observations and guidelines.

First, by convention, people express the statistical significance
level as the opposite of the confidence level. So a confidence level
of 95% means a significance level of 5%; a confidence level of 99%
means a significance level of 1%; and so forth. This is confusing
at first, but you’ll get used to it. Just remember: the lower the sig-
nificance level, the stronger the evidence that some variable has a
nonzero relationship with the response.

Second, in regression models we can often5 assess statistical 5 But not always; see the next chapter.

significance just by looking at whether zero is included in the
confidence interval. That’s because “statistically significant” just
means “zero is not a plausible value,” and a confidence interval
gives us a range of plausible values. For example, let’s take the
95% confidence intervals for two terms in Table 6.1:

• The 95% confidence interval for the partial slope on fireplaces
is (980, 14113). We can rule out zero as a plausible value at
a 95% confidence level, and so we can say that the lot size
variable is statistically significant at the 5% level.

• The 95% confidence interval for the partial slope on lot size
is (−1047, 6457). We cannot rule out zero as a plausible value
with 95% confidence, and so the lot size variable is not statis-
tically significant at the 5% level.

Third, the fact that some variable is “statistically significant”
does not mean that this variable is important in practical terms.
A “significant” variable does not necessarily have a large effect
on the response, nor is it automatically important for generating
good predictions. Statistical significance means that we think the
corresponding coefficient isn’t zero. But it could still be very small.
This is why, in most cases, it is better to focus on a variable’s confi-
dence interval, rather than on whether a variable is significant. The
confidence interval carries a lot more information than a simplistic
distinction between “significant” and “insignificant,” because it
gives you a range of plausible values for the coefficient.

Finally, the fact that some variable is not statistically signifi-
cant does not imply that this variable has no relationship with
the response, or that it should automatically be dropped from the
model. A lack of statistical significance could just mean a big stan-
dard error—in other words, that we have a lot of uncertainty about
the numerical magnitude of some variable’s partial relationship
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with the response. There’s an important but subtle distinction
here: an insignificant coefficient means that we have an absence of
compelling evidence for a nonzero effect. It does not mean that we
have found compelling evidence that the effect is absent.

For example, the confidence interval for the log(acres) term in
Table 6.1 is (−1047, 6457). We therefore cannot rule out zero as a
plausible value. But there are lot of large values, like 5000 or 6000,
that we cannot rule out, either! There’s a lot of uncertainty here.
One symptom of this is a big standard error; another symptom is a
lack of statistical significance at the 5% level. But it does not follow
that lot size is irrelevant for predicting house price.6 6 In this the large standard error is al-

most surely due to collinearity between
lot size and other predictors, which we
will discuss further in a later chapter.Prediction intervals from multiple regression models

Suppose you have a house in Saratoga, NY that you’re about to
put up for sale. It’s a 1900 square-foot house on a 0.7-acre lot.
It has 3 bedrooms, 2.5 bathrooms,7 1 fireplace, gas heating, and 7 A half-bathroom has a toilet but no

bath or shower.central air conditioning. The house was built 16 years ago. (If
you’re counting, that’s 8 possible predictors.) How much would
you expect it to sell for?

A great way to assess the value of the house is to use the avail-
able data to fit a multiple regression model for its price, given its
features. Building regression models for prediction is a rich, im-
portant topic that we’ll consider in more detail later. For now, let’s
suppose we choose to fit a model for price versus all 8 variables
mentioned above: bedrooms, bathrooms, living area, lot size, fire-
places, fuel system type, presence of central air conditioning, and
the age of the home. Table 6.2 gives the coefficients, standard er-

Variable Estimate Std. Error 2.5% 97.5%

Intercept 48549 8190 32486 64611

bedrooms -12263 2653 -17467 -7059

bathrooms 21330 3756 13965 28696

livingArea 98 5 89 107

lotSize 9514 2387 4832 14195

fireplaces 1017 3304 -5464 7498

fuel=electric -14318 4467 -23080 -5556

fue=oil -10465 5290 -20841 -89

centralAir=No -19964 3665 -27151 -12776

age 28 63 -95 151

Table 6.2: Coefficients, standard errors,
and 95% confidence intervals for our
basic predictive model of house price.
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Figure 6.10: A 95% prediction interval
(vertical blue line) for a house whose
forecasted price is ŷ = $257, 400, using
the model shown in Table 6.2.

rors, and 95% confidence intervals for this model. These, in turn,
can be used to form a prediction interval for a “future” house
with predictors (x?1 , . . . , x?p), just as we did back in the chapter on
one-variable linear regression:

y? ∈ β̂0 +
p

∑
j=1

β̂ jx?j︸ ︷︷ ︸
Best guess, ŷ?

± k · se︸︷︷︸
Uncertainty

,

where k is a chosen multiple, and where se is the standard devia-
tion of the model residuals.8 8 As before, this is a slightly over-

simplified formula, in that it ignores
uncertainty due to lack of perfect
knowledge about the parameters. Most
regression software will use the correct
(but much more complicated) formu-
las to calculate prediction intervals,
e.g. the “predict” function in R.

We’re still using multiple regression here, but the goal here is
slightly different than in the previous examples. Here, we don’t
care so much about isolating and interpreting one partial relation-
ship (like that between fireplaces and price). Instead, we just want
to include any variables that will help us improve our predictions.

The model in Table 6.2 tells that us that, for your 1900-square-
foot house in Saratoga on 0.7 beautiful acres, the expected price
is ŷ = 257400; that the residual standard deviation is se = 65600;
and that the 95% prediction interval is (128600, 386200). See Figure
6.10; that’s a pretty wide range, reflecting the considerable varia-
tion in the price of different houses—even houses that look pretty
similar on the page.
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Testing hypotheses

Assessing the evidence for a hypothesis

Among professional football fans, the New England Patriots are
a polarizing team. Their fan base is hugely devoted, probably
due to their long run of success over more than a decade. Many
others, however, dislike the Patriots for their highly publicized
cheating episodes, whether for deflating footballs or clandestinely
filming the practice sessions of their opponents. This feeling is so
common among football fans that sports websites often run images
like the one at right (of the Patriots’ be-hoodied head coach, Bill
Belichick), or articles with titles like “11 reasons why people hate
the Patriots.” Despite—or perhaps because of—their success, the
Patriots always seems to be dogged by scandal and ill will.

But could even the Patriots cheat at the pre-game coin toss?
Believe it or not, many people think so! That’s because, for a

stretch of 25 games spanning the 2014-15 NFL seasons, the Patriots
won 19 out of 25 coin tosses—that’s a 76% winning percentage.
Needless to say, the Patriots’ detractors found this infuriating.
As one TV commentator remarked when this unusual fact was
brought to his attention: “This just proves that either God or the
devil is a Patriots fan, and it sure can’t be God.”

But before turning to religion, let’s take a closer look at the
evidence. Just how likely is it that one team could win the pre-
game coin toss at least 19 out of 25 times, assuming that there’s no
cheating going on?

This question is easy to answer using probability theory—
specifically, something called the binomial distribution. But it’s
also very easy to answer using the Monte Carlo method, in which
we write a computer program that simulates a random process.
In Figure 7.1, we see the results of a Monte Carlo simulation for
pre-game NFL coin tosses, where the Patriots ought to have a 50%
chance of winning each toss. Specifically, we have repeated the

http://www.foxsports.com/nfl/gallery/main-reasons-people-hate-new-england-patriots-092116
http://www.foxsports.com/nfl/gallery/main-reasons-people-hate-new-england-patriots-092116
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Figure 7.1: This histogram shows the
results of a Monte Carlo simulation, in
which we count the number of wins
in 25 simulated coin flips over 10,000

different simulations. The red area
(which has cumulative probability of
0.0062) approximates the probability of
winning 19 or more flips, out of 25.

following simple process 10,000 times:
1. Simulate 25 coin tosses in which the Patriots have a 50%

chance of winning each toss.
2. Count how many times out of 25 that the Patriots won

the toss.
If you’re counting, that’s 250,000 coin tosses: 10,000 simulations of
25 tosses each.

Figure 7.1 shows a histogram of the number of coin tosses won
by the Patriots across 10,000 simulations. Clearly 19 wins is an
unusual, although not impossible, number under this distribution:
in our simulation, the Patriots won at least 19 tosses only 62 of
10,000 times (p = 0.0062), shown as the red area in Figure 7.1.

So did the Patriots win 19 out of 25 coin tosses by chance? Well,
nobody knows for sure—I report, you decide.1 But unless you’re a

1 Despite the small probability of such
an extreme result, it’s hard to believe
that the Patriots cheated on the coin
toss, for a few reasons. First, how
could they? The coin toss would be
extremely hard to manipulate, even if
you were inclined to do so. Moreover,
the Patriots are just one team, and this
is just one 25-game stretch. There are
32 NFL teams, so the probability that
one of them would go on an unusual
coin-toss winning streak over some
25-game stretch over a long time period
is a lot larger than the number we’ve
calculated. Finally, after this 25-game
stretch, the Patriots reverted back
to a more typical coin-toss winning
percentage, closer to 50%. The 25-game
stretch was probably just luck.

hard-core NFL conspiracy theorist, let me encourage you to forget
the Patriots for a moment and focus instead on the process we’ve
just gone through. This simple example has all the major elements
of hypothesis testing, which is the subject of this chapter:
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(1) We have a null hypothesis, that the pre-game coin toss in the
Patriots’ games was truly random.

(2) We use a test statistic, number of Patriots’ coin-toss wins, to
measure the evidence against the null hypothesis.

(3) There is a way of calculating the probability distribution of the
test statistic, assuming that the null hypothesis is true. Here,
we just ran a Monte Carlo simulation of coin flips, assuming
an unbiased coin.

(4) Finally, we used this probability distribution to assess whether
the null hypothesis looked believable in light of the data.

All hypothesis testing problems have these same four elements.
Usually the difficult part is Step 3: calculating the probability
distribution of the test statistic, assuming that the null hypothesis
is true. The essence of the problem is that, in most cases, we can’t
just run a simple simulation of coin flips. Luckily, there is a very
general way of proceeding here, called the permutation test, which
we will now learn about.

Permutation tests

Is gun violence correlated with gun policy?

Gun policy is an important and emotionally charged topic in
21st-century America, where gun violence occurs with far higher
frequency than it does in other rich countries. Many people feel
strongly that certain types of guns, like military-style assault
weapons, should be banned, and that all gun purchases should
be subject to stronger background checks. Others view gun own-
ership as both an important part of their cultural heritage and a
basic right protected by the U.S. Constitution. Like with many
issues, there seems to be little prospect of a national consensus.

Both gun laws, and the likelihood of dying violently as a re-
sult of gun crime, vary significantly from state to state. Figure 7.2
shows some of this variation in a chloropleth map, where discrete
areas on the map are shaded according to the value of some nu-
merical variable. Notice that the states are shown as a gridded
tile of equal-sized hexagons, rather than as an actual map of the
United States. This is common technique used to avoid the visual
imbalances due to large differences in the states’ total area.
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Murder rates and gun laws in the US, 2010

Figure 7.2: Left panel: a chloropleth
map of murder rates versus gun laws
across the U.S. states. The shaded color
shows the state’s gun-murder rate;
blue is lower, and red is higher. The
outline indicates whether a state’s gun-
control laws received a passing or a
failing grade from the Law Center to
Prevent Gun Violence (black for pass-
ing, grey for failing). The right panel
shows a dot plot of the gun-murder
rates across the two groups, together
with the median for each group in
blue. Washington (D.C.), at 16.2 gun
murders per 100,000 people, is far off
the top of the plot, but is still included
in all calculations. According to its
website, http://smartgunlaws.org,
the LCPGV is “a national law center
focused on providing comprehensive le-
gal expertise in support of gun violence
prevention and the promotion of smart
gun laws that save lives.” You can read
a full description of the methodology
used to grade states at this link.

In the chloropleth map in Figure 7.2, the fill color indicates each
state’s gun-murder rate in 2010: blue is lower, red is higher. The
outline color indicates whether a state’s gun-control laws received
a passing or failing grade from the Law Center to Prevent Gun
Violence (LCPGV). The center graded each state’s gun laws on an
A–F letter-grade scale; here “failing” means a grade of F. In the
figure, a black outline means a passing grade, while a grey outline
means a failing grade.

The right panel of Figure 7.2 summarizes the relationship be-
tween gun laws and gun violence via a dot plot, together with the
median for each group in blue. We use the median rather than the
mean to estimate the center of each group, because the median is
more robust to outliers; a clear example of an outlier here is Wash-
ington (D.C.), which at 16.2 gun murders per 100,000 people has a
drastically higher rate than everywhere else in the country.

This dotplot shows that the median murder rate of states with
a failing gun-laws grade is 3 murders per 100,000 people, while
the median murder rate of states with a passing grade is 2.2 per

http://smartgunlaws.org
http://smartgunlaws.org/wp-content/uploads/2012/11/Point-Assignment-Methodology.pdf
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100,000. On the face of it, it would seem as the states with stricter
gun laws have lower murder rates.

Let’s aside for a moment the fact that correlation does not es-
tablish causality. We will instead address the question: could this
association have arisen due to chance? To make this idea more
specific, imagine we took all 50 states and randomly divided them
into two groups, arbitrarily labeled the “passing" states and the
“failing” states. We would expect that the median murder rate
would differ a little bit between the two groups, simply due to ran-
dom variation (for the same reason that hands in a card game vary
from deal to deal). But how big of a difference between these two
groups could be explained by chance?

Null and alternative hypotheses

Thus there are two hypotheses that can explain Figure 7.2:

(1) There is no systematic relationship between murder rates and
gun laws; the observed observed relationship between murder
rates and gun laws is consistent with other unrelated sources
of random variation.

(2) The observed relationship between murder rates and gun laws
is too large to be consistent with random variation.

We call hypothesis 1 the null hypothesis, often denoted H0. Loosely,
it states that nothing special is going on in our data, and that any
relationship we thought might have existed isn’t really there at
all.2 Meanwhile, hypothesis 2 is alternative hypothesis. In some

2 “Null hypothesis” is a term coined
in the early twentieth century, back
when “null” was a common synonym
for “zero” or “lacking in distinctive
qualities.” So if the term sounds dated,
that’s because it is.

cases the alternative hypothesis may just be the logical negation of
the null hypothesis, but it can also be more specific.

In the approach to hypothesis testing that we’ll learn here, we
don’t focus a whole lot on the alternative hypothesis.3 Instead, 3 Specifically, this approach is called

the Fisherian approach, named after
the English statistician Ronald Fisher.
There are more nuanced approaches
to hypothesis testing in which the
alternative hypothesis plays a major
role. These include the Neyman–
Pearson framework and the Bayesian
framework, both of which are widely
used in the real world, but which are a
lot more complicated to understand.

we set out to check whether the null hypothesis looks plausible in
light of the data—just as we did when we tried to check whether
randomness could explain the Patriots’ impressive run of 19 out of
25 coin flips won.

A permutation test: shuffling the cards

In the Patriots’ coin-flipping example, we could easily simulate
data under the null hypothesis, by programming a computer to
repeatedly flip a virtual coin and keep track of the winner. But of
course, most real-life hypothesis-testing situations don’t involve
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Murder rates and gun laws under permutation

Figure 7.3: This map is almost iden-
tical to Figure 7.2, with one crucial
difference: the identities of the states
with passing and failing grades have
been randomly permuted. There is
still a small difference in the medians
of the notionally passing and failing
groups, due to random variation in the
permutation process.

actual coin flips, which makes the virtual coin-flipping approach
somewhat unhelpful as a general strategy.

It turns out, however, that in most situations, we can still har-
ness the power of Monte Carlo simulation to understand what our
data would look like if the null hypothesis were true. Rather than
flipping virtual coins, we run something called a permutation test,
which involves repeatedly permuting (or shuffling) the predictor
variable and recalculating the statistic of interest.

To understand how this works, let’s see an example. Figure 7.3
shows a map and dotplot very similar to those in Figure 7.2, with
one crucial difference: in Figure 7.3, the identities of the states
with notionally “passing” and “failing” gun laws have been ran-
domly permuted. These grades bear no correspondence to reality.
It’s as though we took a deck of 51 cards, each card having some
state’s grade on it (treating D.C. as a state); shuffled the deck; and
then dealt one card randomly to each state. The mathematical
term for this is a permutation of the grades.

As expected, the median gun-murder rates of these two ran-
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Figure 7.4: Six maps with permutated
gun-law grades, with the medians for
the passing and failing groups.
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dom chosen “passing” and “failing” groups aren’t identical (right
panel). The randomly chosen “failing” states have a median of 2.6,
while the randomly chosen “passing” states have a slightly larger
median of 2.8. Clearly we can get a difference in medians of at
least 0.2 quite easily, just by random chance—that is, when the null
hypothesis is true by design.

But Figure 7.3 shows the difference in medians for only a sin-
gle permutation of the states’ gun-law grades. This permutation
is random, and a different permutation would have given as a
slightly different answer. Therefore, to assess whether could we
get a difference in group medians as large as 0.8 just by random
chance, we need to try several more permutations.

Figure 7.4 shows 6 more maps generated using the same per-
mutation procedure. For each map, we shuffle the grade variables
for all the states and recompute the median murder rates for the
notionally “passing” and “failing” groups. Each map leads to its
own difference in medians. In some maps, the difference is pos-
itive (“passing” states are higher), while in others it is negative
(“failing” are states higher). In at least one of the 6 maps—the
bottom right one—the median for the “failing” states exceeds
the median for the “passing” states by more than 1 murder per
100,000 people, just by chance. This is a larger difference than we
see for the real map, in Figure 7.2.

Six permutations give us some idea of how much a difference
in the medians we could expect to see if the null hypothesis were
true. But ideally we’d have many more than 6. Figure 7.5 ad-
dresses this need, showing the result of a much larger Monte Carlo
simulation in which we generated 5,000 random maps, each one
with its own random permutation of the states’ gun-law grades.
For each of these 5,000 maps, we computed the difference in medi-
ans between the notionally passing and failing groups. These 5,000

differences in group medians across the 5,000 maps are shown as a
histogram in Figure 7.5.

Hypothesis testing: a four-step process

Let’s review the vocabulary that describes what we’ve done here.
First, we specified a null hypothesis: that the correlation between
rates of gun violence and state-level gun policies could be ex-
plained by other unrelated sources of random variation. We de-
cided to measure this correlation using a specific statistic: the
difference in medians between the states with passing grades and
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Figure 7.5: The histogram shows the
difference in group medians for 5,000

simulated maps generated by the same
permutation procedure as the 6 maps in
Figure 7.4. Negative values indicate that
the “failing” states had higher rates of
gun violence than the “passing” states.
The actual difference in medians for
the real map in Figure 7.2 is shown
as a vertical red line. This difference
seems to be consistent with (although
does not prove) the null hypothesis that
other sources of random variation, and
not necessarily state-level gun policy,
explains the observed difference in
murder rates.

those with failing grades. (Remember that a statistic is just some
numerical summary of a data set.) To give this statistic a name,
let’s call it ∆ (for difference in medians). It’s intuitively clear that
the larger ∆ is, the less plausible the null hypothesis seems.

Figure 7.5 quantifies this intuition by giving us an idea of how
much variation we can expect in the sampling distribution of our
∆ statistic under the hypothesis that there is no systematic rela-
tionship between gun laws and rates of gun violence. As before,
the sampling distribution is simply the probability distribution of
the statistic under repeated sampling from the population—in this
case, assuming that the null hypothesis is true.

There are two possibilities here, corresponding to the null and
alternative hypotheses. First, suppose that we frequently get at
least as extreme a value of ∆ for a random map, like those in Fig-
ure 7.4, as we do in the real map from Figure 7.2. Then there’s no
reason to be especially impressed by the actual value of δ = −0.8
we calculated from the real map.4 It could have easily happened

4 We use the lower-case δ to denote
the value of the test statistic for your
specific sample, to distinguish it from
the ∆’s simulated under permutation.

by chance. Hence we will be unable to reject the null hypothesis;
it could have explained the data after all. (An important thing
to remember is that failing to reject the null hypothesis is not the
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same thing as accepting the null hypothesis as truth. To use a rela-
tionship metaphor: failing to reject the null hypothesis is not like
getting married. It’s more like agreeing not to break up this time.)

On the other hand, suppose that we almost always get a smaller
value of ∆ in a random map than we do in the real map. Then
we will probably find it difficult to believe that the correlation in
the real map arose due to chance. We will instead be forced to
reject the null hypothesis and conclude that it provides a poor
description of the observable data.

Which of these two possibilities seems to apply in Figure 7.5?
Here, the actual difference of −0.8 for the real map in Figure 7.2
is shown as a vertical red line. It’s position on the histogram sug-
gests possibility (1) here: δ = −0.8 is consistent with (although
does not prove) the null hypothesis that other sources of random
variation unrelated to state-level gun policy can explain the ob-
served difference in murder rates between the passing-grade and
the failing-grade states.

To summarize, the four steps we followed above were:

(1) Choose a null hypothesis H0, the hypothesis that there is no
systematic relationship between the predictor and response
variables.

(2) Choose a test statistic ∆ that is sensitive to departures from the
null hypothesis.

(3) Approximate P(∆ | H0), the sampling distribution of the test
statistic T under the assumption that H0 is true.

(4) Assess whether the observed test statistic for your data, δ, is
consistent with P(∆ | H0).

For the gun-laws example, our test statistic in step (2) was the
difference in medians between the “passing” states and the “fail-
ing” states. We then accomplished step (3) by randomly permuting
the values of the predictor (gun laws) and recomputing the test
statistic for the permuted data set. This shuffling procedure is
called a permutation test when it’s done in the context of this
broader four-step process. There are other ways of accomplishing
step (3)—for example, by appealing to probability theory and do-
ing some math. But the permutation test is nice because it works
for any test statistic (like the difference of medians in the previous
example), and it doesn’t require any strong assumptions.
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Figure 7.6: Assuming that the null
hypothesis is true, the probability of
observing a difference in medians
at least as extreme as δ = −0.8 is
p = 0.072. This tail area to the left of
δ = −0.8 is the p-value of the test.

Using and interpreting p-values

There’s one final question we haven’t answered. How do we ac-
complish step (4) in the hypothesis test? That is, how can we mea-
sure whether the observed statistic for your data is consistent with
the null hypothesis?

The typical approach here is to compute something called a
p-value. Although we didn’t call it by the name “p-value,” this is
exactly what we did for the Patriots’ coin-flipping example at the
beginning of the chapter.

Let’s begin with a concise definition of a p-value, before we
slowly unpack the definition (which is dense and non-intuitive).
A p-value is the probability of observing a test statistic as extreme as, or
more extreme than, the test statistic actually observed, given that the null
hypothesis is true. The way to compute the p-value is to calculate a
tail area indicating what proportion of the sampling distribution,
P(∆ | H0), lies beyond the observed test statistic δ.

This all sounds a bit abstract, but is much easier to understand
by example. Let’s go back to the gun-laws hypothesis test, where
we observed a difference in the medians of δ = −0.8. If the null
hypothesis were true, the probability of getting δ = −0.8 (or



158 data science

something more extreme in the negative direction) would be p =

0.072. We calculate this by taking the tail area under the sampling
distribution that to the left of our observed δ of −0.8. Figure 7.6
highlights this area in the left tail of the sampling distribution
P(∆ | H0). This is the p-value.

Using p-values has both advantages and disadvantages. The
main advantage is that the p-value gives us a continuous measure
of evidence against the null hypothesis. The smaller the p-value,
the more unlikely it is that we would have seen our data under the
null hypothesis, and therefore the greater the evidence the data
provide that H0 is false.

The main disadvantage is that the p-value is hard to interpret
correctly. Just look at the definition—it’s pretty counterintuitive!
To avoid having to think too hard about what a p-value actually
means, people often take p ≤ 0.05 as a very important threshold
that demarcates “significant” (p ≤ 0.05) from “insignificant”
(p > 0.05) results. While there are some legitimate reasons5 for 5 If you are interested in these reasons,

you should read up on the Neyman–
Pearson school of hypothesis testing.

thinking in these terms, in practice, the p ≤ 0.05 criterion can feel
pretty silly. After all, there isn’t some magical threshold at which
a result becomes important: in all practical terms, p = .049 and
p = .051 are nearly identical in terms of the amount of evidence
they provide against a null hypothesis.

Because of how counterintuitive p-values are, people make
mistakes with them all the time, even (perhaps especially) people
with Ph.D’s quoting p-values in original research papers. Here is
some advice about a few common misinterpretations:

• The p-value is not the probability that the null hypothesis is
true, given that we have observed our statistic.

• The p-value is not the probability of having observed our
statistic, given that the null hypothesis is true. Rather, it is
the probability of having observed our statistic, or any more
extreme statistic, given that the null hypothesis is true.

• The p-value is not the probability that your procedure will
falsely reject the null hypothesis, given that the null hypothe-
sis is true.6

6 To get a guarantee of this sort, you
have to set up a pre-specified rejection
region for your p-value (like 0.05), in
which case the size of that rejection
region—and not the observed p-value
itself—can be interpreted as the prob-
ability that your procedure will reject
the null hypothesis, given that the null
hypothesis is true. As above: if you’re
interested, read about the Neyman–
Pearson approach to testing.

The moral of the story is: always be careful when quoting or
interpreting p-values. In many circumstances, a better question
to ask than “what is the p-value?” is “what is a plausible range
for the size of the effect?” This question can be answered with a
confidence interval.7

7 In this case, you could get a confi-
dence interval by bootstrapping the
difference in medians between the two
groups of states.
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Hypothesis testing in regression

To finish off this chapter, we will show how the permutation-
testing framework can be used to answer questions about partial
relationships in multiple regression modeling.

In a previous chapter, we asked the following question about
houses in Saratoga, NY: what is the partial relationship between
heating system type (gas, electric, or fuel oil) and sale price, once
we adjust for the effect of living area, lot size, and the number
of fireplaces? We fit a multiple regression model with these four
predictors, which led to the following equation:

Price = $29868 + 105.3 · SqFt + 2705 · log(Acres) + 7546 · Fireplaces

− 14010 · 1{fuel = electric} − 15879 · 1{fuel = oil} + Residual .

Remember that the baseline case here is gas heating, since it has
no dummy variable. Our model estimated the premium associated
with gas heating to be about $14,000 over electric heating, and
about $16,000 over fuel-oil heating.

But are these differences due to heating-system type statistically
significant, or could they be explained due to chance?

To answer this question, you could look at the confidence in-
tervals for every coefficient associated with the heating-system
variable, just as we learned to do in the chapter on multiple re-
gression. The main difference is that before, we had one coefficient
to look at, whereas now we have two: one dummy variable for
fuel = electric, and one for fuel = oil. Two coefficients means two
confidence intervals to look at.

Sometimes this strategy—that is, looking at the confidence
intervals for all coefficients associated with a single variable—
works just fine. For example, when the confidence intervals for
all coefficients associated with a single variable are very far from
zero, it’s pretty obvious that the categorical variable in question is
statistically significant.

But at other times, this strategy can lead to ambiguous results.
In the context of the heating-system type variable, what if the 95%
confidence interval for one dummy-variable coefficient contains
zero, but the other doesn’t? Or what if both confidence intervals
contain zero, but just barely? Should we say that heating-system
type is significant or not? This potential for ambiguous confidence
intervals gets even worse when your categorical variable has more
than just a few levels, because then there will be many more confi-
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dence intervals to look at.
The core of the difficulty here is that we want to assess the sig-

nificance of the heating-system variable itself, not the significance
of any individual level of that variable. To assess the significance
of the whole variable, with all of its levels, we’ll use a permutation
test. Specifically, we will compare two models:

• The full model, which contains variables for square footage,
lot size, number of fireplaces, and heating system.

• The reduced model, which contains variables for square footage,
lot size, and number of fireplaces, but not for heating sys-
tem. We say that the reduced model is nested within the full
model, since it contains a subset of the variables in the full
model, but no additional variables.

Remember the four basic steps in a
permutation test:

(1) Choose a null hypothesis H0.

(2) Choose a test statistic ∆ that is
sensitive to departures from the
null hypothesis.

(3) Repeatedly shuffle the predictor
of interest and recalculate the
test statistic after each shuffle,
to approximate P(∆ | H0), the
sampling distribution of the test
statistic T under the assumption
that H0 is true.

(4) Check whether the observed
test statistic for your data, δ, is
consistent with P(∆ | H0).

As always, we must start by specifying H0. Loosely speak-
ing, our null hypothesis is that the reduced model provides an
adequate description of house prices, and that the full model is
needlessly complex. To be a bit more precise: the null hypothesis
is that there is no partial relationship between heating system and
house prices, once we adjust for square footage, lot size, and num-
ber of fireplaces. This implies that all of the true dummy variable
coefficients for heating-system type are zero.

Next, we must pick a test statistic. A natural way to assess the
evidence against the null hypothesis is to use improvement in
R2 under the full model, compared to the reduced model. This
is the same quantity we look at when assessing the importance
of a variable in an ANOVA table. The idea is simple: if we see a
big jump in R2 when moving from the reduced to the full model,
then the variable we added (here, heating system) is important
for predicting the outcome, and the null hypothesis of no partial
relationship is probably wrong.

You might wonder here: why not use the coefficients on the
dummy variables for heating-system type as test statistics? The
reason is that there are two such coefficients (or in general, K − 1
coefficients for a categorical variable with K levels). But we need
a single number to use as our test statistic in a permutation test.
Therefore we use R2: it is a single number that summarizes the
predictive improvement of the full model over the reduced model.

Of course, even if we were to add a useless predictor to the re-
duced model, we would expect R2 to go up, at least by a little bit,
since the model would have more degrees of freedom (i.e. param-
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Figure 7.7: Sampling distribution of R2

under the null hypothesis that there is
no partial relationship between heating
system and price after adjusting for
effects due to square footage, lot size,
and number of fireplaces. The blue
vertical line marks the 95th percentile
of the sampling distribution (and so
corresponds to a rejection region at the
5% level). The red line marks the actual
value of R2 = 0.518 when we fit the
full model by adding heating system to
a model already containing the other
three variables.

eters) that it can use to predict the observed outcome. Therefore, a
more precise way of stating our null hypothesis is that, when we
add heating system to a model already containing variables for
square footage, lot size, and number of fireplaces, the improve-
ment we see in R2 could plausibly be explained by chance, even if
this variable had no partial relationship with price.

To carry out a hypothesis test, we need to approximate the
sampling distribution of R2 under the null hypothesis. We will
do so by repeatedly shuffling the heating system for every house
(keeping all other variables the same), and re-fitting our model
to each permuted data set. This breaks any partial relationship
between heating system and price that may be present in our data.
It tells us how big an improvement in R2 we’d expect to see when
fitting the full model, even if the null hypothesis were true.

This sampling distribution is shown in Figure 7.7, which was
generating by fitting the model to 10,000 data sets in which the
heating-system variable had been randomly shuffled, but where
the response and the variables in the reduced model have been
left alone. As expected, R2 of the full model under permutation is
always bigger than than the value of R2 = 0.513 from the reduced
model—but rarely by much. The blue line at R2 = 0.5155 shows
the 95th percentile of the sampling distribution (i.e. the critical
value for a rejection region at the 5% level). The red line shows
the actual value of R2 = 0.518 from the full model fit the original
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data set (i.e. with no shuffling). This test statistic falls far beyond
the 5% rejection region. We therefore reject the null hypothesis and
conclude that there is statistically significant evidence for an effect
on price due to heating-system type.

One key point here is that we shuffled only heating-system
type—or in general, whatever variable is being tested. We don’t
shuffle the response or any of the other variables. That’s because
we are interested in a partial relationship between heating-system
type and price. Partial relationships are always defined with re-
spect to a specific context of other control variables, and we have
to leave these control variables as they are in order to provide the
correct context for that partial relationship to be measured.

To summarize: we can compare any two nested models using a
permutation test based on R2, regardless of whether the variable in
question is categorical or numerical. To do so, we repeatedly shuf-
fle the extra variable in the full model—without shuffling either
the response or the control variables (i.e. those that also appear in
the reduced model). We fit the full model to each shuffled data set,
and we track the sampling distribution of R2. We then compare
this distribution with the R2 we get when fitting the full model to
the actual data set. If the actual R2 is a lot bigger than what we’d
expect under the sampling distribution for R2 that we get under
the permutation test, then we conclude that the extra variable in
the full model is statistically significant.

F tests and the normal linear regression model. Most statistical soft-
ware will produce an ANOVA table with an associated p-value for
all variables. These p-values are approximations to the p-values
that you’d get if you ran sequential permutation tests, adding and
testing one variable at a time as you construct the ANOVA table.
To be a bit more specific, they correspond to something called an F
test under the normal linear regression model that we met awhile
back:

yi = β0 +
p

∑
j=1

β jxij + ei , ei ∼ N(0, σ2) .

You might want to revisit the discussion of the normal linear re-
gression model starting on page 120. But the upshot is that an F
test is conceptually similar to a permutation test based on R2—and
if you’re happy with the assumption of normally distributed resid-
uals, you can treat the p-values from these two tests as virtually
interchangeable.8 8 If you’re not happy with this assump-

tion, then you’re better off with the
permutation test.
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Building predictive models

Building predictive models

Suppose you have a house in Saratoga, NY that you’re about to
put up for sale. It’s a 1900 square-foot house on a 0.7-acre lot.
It has 3 bedrooms, 2.5 bathrooms,1 1 fireplace, gas heating, and 1 A half-bathroom has a toilet but no

bath or shower.central air conditioning. The house was built 16 years ago. How
much would you expect it to sell for?

Although we’ve been focusing on only a few variables of in-
terest so far, our house-price data set actually has information on
all these variables, and a few more besides. A great way to assess
the value of the house is to use the available data to fit a multi-
ple regression model for its price, given its features. We can then
use this model to make a best guess for the price of a house with
some particular combination of features—and, optionally, to form
a prediction interval that quantifies the uncertainty of our guess.

We refer to this as the process of building a predictive model.
Although we will still use multiple regression, the goal here is
slightly different than in the previous examples. Here, we don’t
care so much about isolating and interpreting one particular par-
tial relationship (like that between fireplaces and price). Instead,
we just want the most accurate predictions possible.

The key principle in building predictive models is Occam’s razor,
which is the broader philosophical idea that models should be
only as complex as they need to be in order to explain reality
well. The principle is named after a medieval English theologian
called Willam of Occam. Since he wrote in Latin, he put it like this:
Frustra fit per plura quod potest fieri per pauciora (“It is futile to do
with more things that which can be done with fewer.”) A more
modern formulation of Occam’s razor might be the KISS rule:
keep it simple, stupid.

In regression modeling, this principle is especially relevant for
variable selection—that is, deciding which possible predictor vari-
ables to add to a model, and which to leave out. In this context,

https://en.wikipedia.org/wiki/KISS_principle
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Occam’s razor is about finding the right set of variables to include
so that we fit the data, without overfitting the data. Another way
of saying this is that we want to find the patterns in the data, with-
out memorizing the noise.

In this chapter, we’ll consider two main questions:

(1) How can we measure the predictive power of a model?

(2) How can we find a model with good predictive power?

Measuring generalization error

To understand how we measure the predictive power of a re-
gression model, we first need a bit of notation. Specifically, let’s
say that we have estimated a multiple regression model with
p predictors (x1, x2, . . . , xp) to some data, giving us coefficients
(β̂0, β̂1, . . . , β̂p). Now we encounter a new case, not in our original
data set. We’ll let x? = (x?1 , x?2 , . . . , x?p) be the predictor variables
for this new case, and y? denote the corresponding response. We
will use the fitted regression model, together with x?, to make a
prediction for y?:

ŷ? = β̂0 +
p

∑
j=1

β̂ jx?j .

Our goal is to make the generalization error—that is, the difference
between y? and ŷ?—as small as possible, on average.

A natural way to measure the generalization error of a regres-
sion model is using a quantity called the mean-squared predictive
error, or MSPE. The mean-squared predictive error is a property
of a fitted model, not an individual data point. It summarizes the
magnitude of the errors we typically make when we use the model
to make predictions ŷ? on new data:

MSPE = Average value of (y? − ŷ?)2 when sampling new data points .

Here a “new” data point means one that hasn’t been used to fit
the model. You’ll notice that, in calculating MSPE, we square the
prediction error y? − ŷ? so that both positive and negative errors
count equally.

Low mean-squared predictive error means that y? − ŷ? tends to
be close to zero when we sample new data points. This gives us a
simple principle for building a predictive model: find the model
(i.e. the set of variables to include) with the lowest mean-squared
predictive error.
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Estimating the the mean-squared predictive error

Conceptually, the simplest way to estimate the mean-squared
predictive error of a regression model is to actually collect new
data and calculate the average predictive error made by our model.
Specifically, suppose that, after having fit our model in the first
place, we go out there and collect n? brand new data points, with
responses y?i and predictors (x?i1, . . . , x?ip). We can then estimate the
mean-squared predictive error of our model in two simple steps:

1. Form the prediction for each new data point:

ŷi
? = β̂0 +

p

∑
j=1

β̂ jx?ij .

2. Calculate the average squared error of your predictions:

M̂SPEout =
1

n?

n?

∑
i=1

(y?i − ŷ?i )
2 .

Notice that we put a hat on MSPE, because the expression
on the right-hand side is merely an estimate of the true mean-
squared predictive error, calculated using a specific sample
of new data points. (Calculating the true MSPE would re-
quire us, in principle, to average over all possible samples
of new data points, which is obviously impractical.) We also
use the subscript “out” to indicate that it is an out-of-sample
measure—that is, calculated on new data, that falls outside of
our original sample.

Conventionally, we report the square root of M̂SPEout (which is
called root mean-squared predictive error, or RMSPE), because this
has the same units as the original y variable. You can think of the
RMSPE as the standard deviation of future forecasting errors made
by your model.

Assuming your new sample size n? isn’t too small, these two
steps are a nearly foolproof way to estimate the mean-squared pre-
dictive error of your model. The drawback, however, is obvious:
you need a brand new data set, above and beyond the original
data set that you used to fit the model in the first place. This new
data set might be expensive or impractical to collect.

Thus we’re usually left in the position of needing to estimate
the mean-squared predictive error of a model, without having
access to a “new” data set. For this reason, the usual practice is
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make a train/test split of your data: that is, to randomly split your
original data set into two subsets, called the training and testing
sets.

• The training set is used only to fit (“train”) the model—that
is, to estimate the coefficients (β̂0, β̂1, . . . , β̂p).

• The testing set is used only to estimate the mean-squared
predictive error of the model. It is not used at all to fit the
model. For this reason, the testing set is sometimes referred
to as the “hold-out set,” since it is held out of the model-
fitting process.

From this description, it should be clear that the training set plays
the role of the “old” data, while the testing set plays the role of the
“new” data.

This gives us a simple three-step procedure for choosing be-
tween several candidate models (i.e. different possible sets of vari-
ables to include).

(1) Split your data into training and testing sets.

(2) For each candidate model:

A. Fit the model using the training set.

B. Calculate M̂SPEout for that model using the testing set.

(3) Choose the model with the lowest value of M̂SPEout.

Choosing the training and testing sets. A key principle here is that
you must randomly split your data into a training set and testing
set. Splitting your data nonrandomly—for example, taking the
first 800 rows of your data as a training set, and the last 200 rows
as a testing set—may mean that your training and testing sets are
systematically different from one another. If this happens, your
estimate of the mean-squared prediction error can be way off.

How much of the data should you reserve for the testing set?
There are no hard-and-fast rules here. A common rule of thumb
is to use about 75% of the data to train the model, and 25% to
test it. Thus, for example, if you had 100 data points, you would
randomly sample 75 of them to use for model training, and the
remaining 25 to estimate the mean-squared predictive error. But
other ratios (like 50% training, or 90% training) are common, too.

My general guideline is that the more data I have, the larger the
fraction of that data I will use for training the predictive model.
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Thus with only 100 data points, I might use a 75/25 split between
training and testing; but with 10,000 data points, I might use more
like a 90/10 split between training and testing. That’s because es-
timating the model itself is generally harder than estimating the
mean-squared predictive error.2 Therefore, as more data accumu- 2 By “harder” here, I mean “subject

to more sources of statistical error,”
as opposed to computationally more
difficult.

lates, I like to preferentially allocate more of that data towards the
intrinsically harder task of model estimation, rather than MSPE
estimation.

Averaging over different test sets. It’s a good idea to average your
estimate of the mean-squared predictive error over several differ-
ent train/test splits of the data set. This reduces the dependence
of M̂SPEout on the particular random split into training and test-
ing sets that you happened to choose. One simple way to do this
is average your estimate of MSPE over many different random
splits of the data set into training and testing sets. Somewhere
between 5 and 100 splits is typical, depending on the computa-
tional resources available (more is better, to reduce Monte Carlo
variability).

Another classic way to estimate MSPE it is to divide your data
set into K non-overlapping chunks, called folds. You then average
your estimate of MPSE over K different testing sets, one corre-
sponding to each fold of the data. This technique is called cross
validation. A typical choice of K is five, which gives us five-fold
cross validation. So when testing on the first fold, you use folds
2-5 to train the model; when testing on fold 2, you use folds 1 and
3-5 to train the model; and so forth.

Can we use the original data to estimate the MSPE?

A reasonable question is: why do even we need a new data set to
estimate the mean-squared prediction error? After all, our fitted
model has residuals, ei = yi − ŷi, which tell us how much our
model has “missed” each data point in our sample. Why can’t
we just use the residual variance, s2

e , to estimate the MSPE? This
approach sounds great on the surface, in that we’d expect the past
errors to provide a good guide to the likely magnitude of future
errors. Thus you might be tempted to use the in-sample estimate of
MSPE, denoted

M̂SPEin = s2
e =

1
n− p

n

∑
i=1

(yi − ŷi)
2 ,

https://en.wikipedia.org/wiki/Cross-validation_(statistics)
https://en.wikipedia.org/wiki/Cross-validation_(statistics)
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where we recall that p is the number of parameters in the model.
Using M̂SPEin certainly removes the need to collect a new data

set. This turns out, however, to be a false economy: M̂SPEin is
usually too optimistic as an estimate of a model’s generalization
error. Practically speaking, this means the following. When we
use M̂SPEin to quantify the in-sample error of a model, and then
we actually go out and take new data to calculate the out-of-sample
generalization error M̂SPEout, we tend to discover that the out-
of-sample error is larger—sometimes much larger! This is called
overfitting, and it is especially likely to happen when the size
of the data set is small, or when the model we’re fitting is very
complex (i.e. has lots of parameters).

An example

Let’s see these ideas in practice, by comparing three predictive
models for house prices in Saratoga, New York. Our models will
draw from the following set of variables:

• lot size, in acres
• age of house, in years
• living area of house, in square feet
• percentage of residents in neighborhood with college degree
• number of bedrooms
• number of bathrooms
• number of total rooms
• number of fireplaces
• heating system type (hot air, hot water, electric)
• fuel system type (gas, fuel oil, electric)
• central air conditioning (yes or no)

We’ll consider three possible models for price constructed from
these 11 predictors.

Small model: price versus lot size, bedrooms, and bathrooms (4
total parameters, including the intercept).

Medium model: price versus all variables above, main effects only
(14 total parameters, including the dummy variables).

Big model: price versus all variables listed above, together with
all pairwise interactions between these variables (90 total
parameters, include dummy variables and interactions).

Table 8.1 shows both M̂SPEin and M̂SPEout for these three mod-
els. To calculate M̂SPEout, we used 80% of the data as a training
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In-sample RMSPE Out-of-sample RMSPE Difference
Small model: underfit $76,144 $76,229 $85

Medium model: good fit $65,315 $65,719 $403

Big model: overfit $61,817 $71,426 $9,609

Table 8.1: In-sample versus out-of-
sample estimates of the root mean-
squared predictive error for three
models of house prices in Saratoga,
NY. The “difference” column shows the
difference between the in-sample and
out-of-sample estimates. The big model
has a very large difference (over $9,000),
indicating that the in-sample estimate is
way too optimistic, and that the model
is probably overfit to the data.

set, and the remaining 20% as a test set, and we averaged over 100

different random train/test splits of the data. The final column,
labeled “difference,” shows the difference between the in-sample
and out-of-sample estimates of prediction error.

There are a few observations to take away from Table 8.1. The
first is that the big model (with all the main effects and interac-
tions) has the lowest in-sample error. With a residual standard
deviation of $61,817, it seems nearly $3,500 more accurate than the
medium model, which is next best. This is a special case of a very
general phenomenon: a more complex model will always fit the
data better, because it has more degrees of freedom to play with.

However, the out-of-sample measure of predictive error tells
a different story. Here, the medium-sized model is clearly the
winner. Its predictions on new data are off by about $65,719, on
average, which is nearly $6,000 better than the big model.

Finally, notice how severely degraded the predictions of the
big model become when moving from old (in-sample) data to
new (out-of-sample) data: about $9,600 worse, on average. This
kind of degradation is a telltale sign of overfitting. The medium
model suffers only a mild degradation in performance on new
data, while the small model suffers hardly any degradation at all—
although it’s still not competitive on the out-of-sample measure,
because it wasn’t that good to begin with. This is also a special
case of a more general phenomenon: some degradation in pre-
dictive performance on out-of-sample versus in-sample data is
inevitable, but simpler models tend to degrade a lot less.

Figure 8.1 demonstrates this point visually. Starting from a very
simple model of price (using only lot size as a predictor), we’ve
added one variable or interaction at a time3 from the list on page 3 To be specific here, at each stage we

added the single variable or interac-
tion that most improved the fit of the
model. See the next section on stepwise
selection.

168. For each new variable or interaction, we recalculated both
the in-sample (M̂SPEin) and out-of-sample (M̂SPEout) estimates of
the generalization error. As we add variables, the out-of-sample
error initially gets smaller, reflecting a better fitting model that
still generalizes well to new data. But after 15 or 20 variables,
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Figure 8.1: Starting from a small
pricing model with just lot size as a
predictor, we’ve added one variable
or interaction at a time from the list
on page 168. The red line shows the
in-sample estimate of error, while the
black line shows the out-of-sample esti-
mate. After we add about 15 variables
and interactions, the out-of-sample
error starts to creep back up. Clearly
the in-sample estimate is too optimistic,
especially as the model gets more
complex.

eventually the out-of-sample error starts creeping back up, due to
overfitting. The in-sample estimate of error, however, keeps going
down, falling even further out of line with the real out-of-sample
error as we add more variables to the model.

In summary, you should remember the basic mantra of predic-
tive model building: out-of-sample error is larger than in-sample
error, especially for bigger models. If you care about minimizing
out-of-sample error, you should always use an out-of-sample esti-
mate of a model’s MSPE, to make sure that you’re not overfitting
the original data. Our goal here should be obvious: to find the
“turning point” in Figure 8.1, and to stop adding variables before
we start overfitting.
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Iterative model building via stepwise selection

Now that we know how to measure generalization error of a
model, we’re ready to introduce the overall steps in the process
of building and using a predictive model from a set of candidate
variables x1, x2, etc. We sometimes use the term scope to refer to
this set of candidate variables.

The seemingly obvious approach is to fit all possible models
under consideration to a training set, and to measure the gener-
alization error of each one on a testing set. If you have only a few
variables, this will work fine. For example, with only 2 variables,
there are only 2

2 = 4 possible models to consider: the first variable
in, the second variable in, both variables in, or both variables out.
You can fit and test those four models in no time. This is called
exhaustive enumeration.

However, if there are lots of variables, exhaustive enumera-
tion of all the models becomes a lot harder to do, for the simple
fact that it’s too exhausting—there are too many models to con-
sider. For example, suppose we have 10 possible variables, each
of which we could put in or leave out of the model. Then there
are 210 = 1024 possible models to consider, since each variable
could be in or out in any combination. That’s painful enough. But
if there are 100 possible variables, there are 2100 possible models
to consider. That’s 1 nonillion models—about 1030, or a thousand
billion billion billion. This number is larger than the number of
atoms in a human body.

You will quite obviously never be able to fit all these countless
billions of models, much less compare their generalization errors
on a testing set, even with the most powerful computer on earth.
Moreover, that’s for just 100 candidate variables with main effects
only. Ideally, we’d like the capacity to build a model using many
more candidate variables than that, or to include the possibility of
interactions among the variables.

Thus a more practical approach to model-building is iterative:
that is, to start somewhere reasonable, and to make small changes
to the model, one variable at a time. Model-building in this itera-
tive way is really a three-step process:

(1) Choose a baseline model, consisting of initial set of predictor
variables to include in the model, including appropriate trans-
formations, polynomial terms and interactions. Exploratory
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data analysis (i.e. plotting your data) will generally help you
get started here, in that it will reveal obvious relationships in
the data. Then fit the model for y versus these initial predic-
tors.

(2) Check the model. If necessary, change what variables are in-
cluded, what transformations are used, etc.:

(a) Are the assumptions of the model met? This is generally
addressed using residual plots, of the kind shown in Fig-
ures 6.7 and 6.8. This allows you to assess whether the
response varies linearly with the predictors, whether there
are any drastic outliers, etc.

(b) Are we missing any important variables or interactions?
This is generally addressed by adding candidate variables
or interactions to the model from step (1), to see how
much each one improves the generalization error (MSPE).

(c) Are there signs that the model might be overfitting the
data? This is generally addressed by deleting variables or
interactions that are already in the model, to see if doing
so actually improves the model’s generalization error.

You may need to iterate these three questions a few times,
going through many rounds of adding or deleting variables,
before you’re satisfied with your final model. Remember that
the best way to measure generalization error is using an out-
of-sample measure, like M̂SPEout derived from a train/test
split of the data.

Once you’re happy with the model itself, then you can. . . .

(3) Use your fitted model to form predictions (and optionally,
prediction intervals) for your new data points.

Can this process be automated?

In this three-step process, step 1 (start somewhere reasonable) and
step 3 (use the final model) are usually pretty easy. The part where
you’ll spend the vast majority of your time and effort is step 2,
when you consider many different possible variables to add or
delete to the current model, and check how much they improve or
degrade the generalization error of that model.

This is a lot easier than considering all possible combinations of
variables in or out. But with lots of candidate variables, even this
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iterative process can get super tedious. A natural question is, can it
be automated?

The answer is: sort of. We can easily write a computer program
that will automatically check for iterative improvements to some
baseline (“working”) model, using an algorithm called stepwise
selection:

(1) From among a candidate set of variables (the scope), check all
possible one-variable additions or deletions from the working
model;

(2) Choose the single addition or deletion that yields the best im-
provement to the model’s generalization error. This becomes
the new “working model.”

(3) Iteratively repeat steps (1) and (2) until no further improve-
ment to the model is possible.

The algorithm terminates when it cannot find any one-variable
additions or deletions that will improve the generalization error of
the working model.

Some caveats. Stepwise selection tends to work tolerably well in
practice. But it’s far from perfect, and there are some important
caveats. Here are three; the first one is minor, but the second two
are pretty major.

First, if you run stepwise selection from two different baseline
models, you will probably end up with two different final models.
This tends not to be a huge deal in practice, however, because the
two final models usually have similar mean-squared predictive
errors. Remember, when we’re using stepwise selection, we don’t
care too much about which combinations of variables we pick, as
long as we get good generalization error. Especially if the predic-
tors are correlated with each other, one set of variables might be
just as good as another set of similar (correlated) variables.

Second, stepwise selection usually involves some approxima-
tion. Specifically, at each step of stepwise selection, we have to
compare the generalization errors of many possible models. Most
statistical software will perform this comparison not by actually
calculating M̂SPEout on some test data, but rather using one of
several possible heuristic approximations for MSPE. The most
common one is called the AIC approximation:4

4 In case you’re curious, AIC stands
for “Akaike information criterion.” If
you find yourself reading about AIC
on Wikipedia or somewhere similar,
it will look absolutely nothing like
the equation I’ve written here. The
connection is via a related idea called
“Mallows’ Cp statistic,” which you can
read about here.M̂SPEAIC = M̂SPEin

(
1 +

p
n

)
= s2

e

(
1 +

p
n

)
,

https://en.wikipedia.org/wiki/Mallows's_Cp
https://en.wikipedia.org/wiki/Mallows's_Cp
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where n is the sample size and p is the number of parameters in
the model.

The AIC estimate of mean-squared predictive error is not
a true out-of-sample estimate, like M̂SPEout. Rather, it is like
an “inflated” or “penalized” version of the in-sample estimate,
M̂SPEin = s2

e , which we know is too optimistic. The inflation factor
of (1 + p/n) is always larger than 1, and so M̂SPEAIC is always
larger than M̂SPEin. But the more parameters p you have relative
to data points n, the larger the inflation factor gets. It’s important
to emphasize that M̂SPEAIC is just an approximation to M̂SPEout.
It’s a better approximation than M̂SPEin, but it still relies upon
some pretty specific mathematical assumptions that can easily be
wrong in practice.

The third and most important caveat is that, when using any
kind of automatic variable-selection procedure like stepwise selec-
tion, we lose the ability to use our eyes and our brains each step
of the way. We can’t plot the residuals to check for outliers or vi-
olations of the model assumptions, and we can’t ensure that the
combination of variables visited by the algorithm make any sense,
substantively speaking. It’s worth keeping in mind that your eyes,
your brain, and your computer are your three most powerful tools
for statistical reasoning. In stepwise selection, you’re taking two of
these tools out of the process, for the sake of doing a lot of brute-
force calculations very quickly.

None of these caveats are meant to imply that you shouldn’t use
stepwise selection—merely that you shouldn’t view the algorithm
as having God-like powers for discerning the single best model,
or treat it as an excuse to be careless. You should instead proceed
cautiously. Always verify that the stepwise-selected model makes
sense and doesn’t violate any crucial assumptions. It’s also a good
idea to perform a quick train/test split of your data and compute
M̂SPEout for your final model, just as a sanity check, to make sure
that you’re actually improving the generalization error versus your
baseline model.



9
Understanding cause and effect

Statistical questions versus causal questions

Why have some nations become rich while others have remained
poor? Do small class sizes improve student achievement? Does
following a Mediterranean diet rich in vegetables and olive oil
reduce your risk of a heart attack? Does a “green” certification
(like LEED, for Leadership in Energy and Environmental Design)
improve the value of a commercial property?

Questions of cause and effect like these are, fundamentally,
questions about counterfactual statements. A counterfactual is
an if–then statement about something that has not actually oc-
curred. For example: “If Colt McCoy had not been injured early
in the 2010 National Championship football game, then the Texas
Longhorns would have beaten Alabama.” If you judge this coun-
terfactual statement to be true—and who but the most hopelessly
blinkered Crimson Tide fan doesn’t?—then you might say that
Colt McCoy’s injury caused the Longhorns’ defeat.

Statistical questions, on the other hand, are about correlations.
This makes them fundamentally different from causal questions.

• Causal: “If we invested more money in our school system,
how much faster would our economy grow?” Statistical:
“In looking at data on a lot of countries, how are education
spending and economic growth related?”

• Causal: “If I ate more vegetables than I do now, how much
longer would I live?” Statistical: “Do people who eat a lot of
vegetables live longer, on average, than people who don’t?”

• Causal: “If we hire extra teachers at our school and reduce
our class sizes, will our students’ test scores improve?” Sta-
tistical: “Do students in smaller classes tend to have higher
test scores?”

http://www.usgbc.org/leed
https://en.wikipedia.org/wiki/2010_BCS_National_Championship_Game
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selective reporting.

Causal questions all invoke some kind of hypothetical interven-
tion, where one thing is changed and everything else is held equal.
In such a hypothetical intervention, there is no competing expla-
nation for what might be causing the change we expect to see—in
our economy, our lifespan, our students’ test scores, a football
game, or whatever outcome we’re interested in.

Statistical questions, on the other hand, are about the patterns
we observe in the real world. And the real world is rarely so sim-
ple as the hypothetical interventions we imagine. For example,
people who eat more vegetables live longer—that’s a clear pattern.
But those same people also tend to exercise more, live in better
housing, and have higher-status jobs. These other factors are con-
founders. A confounder is a competing explanation—some other
factor correlated with both the “treatment” assignment (whether
someone eats vegetables) and the response (lifespan). So in light
of these confounders, how do we know it’s the vegetables, rather
than all that other stuff, that’s making veggie-eaters live longer?

This is just a specific version of the general question we’ll ad-
dress in this chapter: under what circumstances can causal ques-
tions be answered using statistics?

Good evidence . . . and bad

Most of the cause-and-effect reasoning that you’ll see out there in
the real world is of depressingly poor quality. A common flaw is
cherry picking: that is, pointing to data that seems to confirm some
argument, while ignoring contradictory data.

Here’s an example. In the left panel in Figure 9.1 we see a
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group of seven countries that all spend around 1.5% of their GDP
on education, but with very different rates of economic growth for
the 37 years spanning 1960 to 1996. In the right panel, we see an-
other group of six countries with very different levels of spending
on education, but similar growth rates of 2–3%.

Both highly selective samples make it seem as though educa-
tion and economic growth are barely related. If presented with
the left panel alone, you’d be apt to conclude that the differences
in growth rates must have been caused by something other than
differences in education spending (of which there are none). Like-
wise, if presented with the right panel alone, you’d be apt to con-
clude that the large observed differences in education spending
don’t seem to have produced any difference in growth rates. The
problem here isn’t with the data—it’s with the biased, highly selec-
tive use of that data.

This point seems almost obvious. Yet how tempting it is just to
cherry pick and ignore the messy reality. Perhaps without even re-
alizing it, we’re all accustomed to seeing news stories that marshal
highly selective evidence—usually even worse than that of Figure
9.1—on behalf of some plausible because-I-said-so story:

[H]igher levels of education are critical to economic growth. . . .
Boston, where there is a high proportion of college graduates,
is the perfect example. Well-educated people can react more
quickly to technological changes and learn new skills more
readily. Even without the climate advantages of a city like San
Jose, California, Boston evolved into what we now think of
as an “information city.” By comparison, Detroit, with lower
levels of education, languished.1 1 “Economic Scene.” New York Times

(Business section); August 5, 2004

And this from a reporter who presumably has no hidden agenda.
Notice how the selective reporting of evidence—one causal hy-
pothesis, two data points—lends an air of such graceful inevitabil-
ity to what is a startlingly superficial analysis of the diverging
economic fates of Boston and Detroit over the last half century.

Of course, most bad arguments are harder to detect than this
howler from the New York Times. After all, using data to under-
stand cause-and-effect relationships is hard. For example, consider
the following summary of a recent neuroscience study:

A study presented at the Society for Neuroscience meeting, in
San Diego last week, shows people who start using marijuana
at a young age have more cognitive shortfalls. Also, the more
marijuana a person used in adolescence, the more trouble
they had with focus and attention. “Early onset smokers
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GDP Growth versus Education Spending
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Figure 9.2: A scatter plot of GDP
growth versus education spending
for 79 countries. The tiny red dots
clustered near the x and y axes are
called rug plots. They are miniature
histograms aligned with the axes of the
predictor and the response.

have a different pattern of brain activity, plus got far fewer
correct answers in a row and made way more errors on certain
cognitive tests,” says study author Staci Gruber.2

2 www.usatoday.com/yourlife/

health/medical/pediatrics/

2010-11-20-teendrugs22_ST_N.htm

Did the marijuana smokers get less smart, or were the less-smart
kids more likely to pick up a marijuana habit in the first place?
It’s an important question to consider in making drug policy,
especially for states and countries where marijuana is legal. But
can we know the answer on the basis of a study like this?

For another example, consider the bigger sample of countries in
Figure 9.2, which provides a much more representative body of ev-
idence on the GDP-versus-education story. This evidence takes the
form of a scatter plot of GDP growth versus education spending
for a sample of 79 countries worldwide. Notice the following two
facts:

(1) Of the 29 countries that spent less than 2% of GDP on
education, 18 fall below the median growth rate (1.58%).

www.usatoday.com/yourlife/health/medical/pediatrics/2010-11-20-teendrugs22_ST_N.htm
www.usatoday.com/yourlife/health/medical/pediatrics/2010-11-20-teendrugs22_ST_N.htm
www.usatoday.com/yourlife/health/medical/pediatrics/2010-11-20-teendrugs22_ST_N.htm
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(2) Of the 18 countries that spent more than 3% of GDP on
education, 16 fall above the median growth rate.

These two facts, together with the upward trend in the scatter plot,
suggest that economic growth and education spending are corre-
lated. But this does not settle the causal question. For example, it
might be that countries spend a lot on education because they are
rich, rather the other way around.

The generic difficulty is that there are many different ways that
two variables X and Y can appear correlated.

(1) One-way causality: the first domino falls, then the second; the
rain falls, and the grass gets wet. (X causes Y directly.)

(2) Two-way causality: flowers and honey bees prosper together.
(Both X and Y play a role in causing each other.)

(3) Common cause: People who go to college tend to get higher-
paying jobs than those who don’t. Does education directly
lead to better economic outcomes? Or are a good education
and a good job both just markers of a person’s underlying
qualities? (The role of X in causing Y is hard to distinguish
from the role of C, which we may not have observed.)

(4) Common effect: either musical talent (X) or athletic talent (Y)
will help you get into Harvard (Z). Among a population
of Harvard freshmen, musical and athletic talent will thus
appear negatively correlated, even if they are independent
in the wider population. (X and Y both contribute to some
common outcome C, inducing a correlation among a subset
of the population defined by Z. This is often called Berkson’s
paradox; it is subtle, and we’ll encounter it again.)

(5) Luck: the observed correlation is a coincidence.

This is the point where most books remind you that “correla-
tion does not imply causation.” Obviously. But if not to illuminate
causes, what is the point of looking for correlations? Of course cor-
relation does not imply causality, or else playing professional bas-
ketball would make you tall. But that hasn’t stopped humans from
learning that smoking causes cancer, or that lightning causes thun-
der, on the basis of observed correlations. The important question
is: what distinguishes the good evidence-based arguments from
the bad?
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Figure 9.3: Originally published online
at xkcd: http://xkcd.com/552/

Four common identification strategies

The key principle in using evidence to draw causal conclusions is
that of a balanced comparison. To make things simple, we’ll imag-
ine that our predictor X is binary (i.e. has two groups), and we’ll
borrow the lingo of a clinical trial by referring to the two groups
as the “treatment” and “control.” To reach the conclusion that X
causes Y, you must do two things: (1) compare cases in the treat-
ment and control groups, to see how their Y values differ; and
(2) ensure balance, by removing all other systematic differences be-
tween the cases in the treatment and control groups. Balance is
crucial; it’s what allows us to conclude that the differences in X
(and not something else) cause the differences we observe in Y.

In general, there are four common ways to make a balanced
comparison. These are often called identification strategies, in the
sense that they are strategies for identifying a causal effect.

(1) Run a real experiment, randomizing subjects to the treatment
and control groups. The randomization will ensure that, on
average, there are no systematic differences between the two
groups, other than the treatment.

(2) Find a natural experiment: that is, find a situation where the way
that cases fall naturally into the treatment and control groups
plausibly resembles a random assignment.

(3) Matching: artificially construct a balanced data set from an
unbalanced data set, by explicitly matching treated cases
with similar control cases, and discarding the cases without
a good match. This will correct for lack of balance between
control and treatment groups.

http://xkcd.com/552/
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(4) Modeling: use multiple regression modeling to adjust for con-
founders and isolate a partial relationship between the re-
sponse and the treatment of interest.

We’ll take each of these four ideas in turn.

The power of experiment

The idea of an experiment is simple. If you want to know what
would happen if you intervened in some system, then you should
intervene, and measure what happens. There is simply no better
way to establish that one thing causes another.

Indeed, one kind of experiment—the randomized, controlled
clinical trial—is one of the most important medical innovations
in history. Suppose we want to establish whether a brand new
cholesterol drug—we’ll call it Zapaclot—works better than the old
drug. Also suppose that we’ve successfully recruited a large cohort
of patients with high cholesterol. We know that diet and genes
play a role here, but that drugs can help, too. We express this as

Cholesterol ∼ Diet + Genes + Drugs .

Interpret the plus sign as the word “and,” not like formal addition:
we’re assuming that cholesterol depends upon diet, genes, and
drugs, although we haven’t said how. Of course, it’s that third
predictor in the model we care about; the first two, in addition to
some others that we haven’t listed, are potential confounders.

First, what not to do: don’t proceed by giving Zapaclot to all
the men and the old drug to all the women, or Zapaclot to all
the marathon runners and the old drug to the couch potatoes.
These highly non-random assignments would obviously bias any
judgment about the relative effect of the new drug compared to
the old one. We refer to this sort of thing as selection bias: that
is, any bias in the selection of cases that receive the treatment.
Moreover, you shouldn’t just give the new drug to whomever
wants it, or can afford it. The people with more engagement, more
knowledge, more money, or more trust in the medical system
would probably sign up in greater numbers—and if those people
have systematic differences in diet or genes from the people who
don’t sign up, then you’ve just created a hidden selection bias.

Instead, you should two simple steps.
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Randomize: randomly split the cohort into two groups, denoted the
treatment group and the control group.

Intervene: allocate everyone in the treatment group to take the
treatment (e.g. Zapaclot, the new drug), and everyone in the
control group to take something else (e.g. the old drug or a
placebo).3 3 Everyone in the control group should

be taking the same something else,
whether it’s the old drug or a placebo.Randomize and intervene: a simple prescription, but the surest

way to establish causality. The intervention allows you to pick up
a difference between the new and old drug, if there’s one to be
found. The randomization ensures that other factors—even un-
known factors, in addition to known ones like diet and lifestyle—
do not lead us astray in our causal reasoning. The Latin phrase
ceteris paribus, which translates roughly as “everything else being
equal,” is often used to describe such a situation. By randomizing
and intervening, we have ensured that the only systematic differ-
ence between the groups is the treatment itself. The randomization
gives us a balanced comparison.

This last point is crucial. It’s not that diet, genes, and other
lifestyle factors somehow stop affecting a patient’s cholesterol level
when we randomize and intervene. It’s just that diet, genes, and
lifestyle factors aren’t correlated with the treatment assignment,
and so they’re balanced between the two groups, on average.

The need to avoid selection bias sounds obvious. But if selection
bias in medical trials were not rigorously policed, then it would
be easy for doctors to cherry pick healthy patients for newly pro-
posed treatments. After all, a doctor who invents a new, seemingly
effective form of treatment will almost surely become both rich
and famous. As one physician reminisces:

One day when I was a junior medical student, a very impor-
tant Boston surgeon visited the school and delivered a great
treatise on a large number of patients who had undergone
successful operations for vascular reconstruction. At the end
of the lecture, a young student at the back of the room timidly
asked, “Do you have any controls?” Well, the great surgeon
drew himself up to his full height, hit the desk, and said, “Do
you mean did I not operate on half of the patients?” The hall
grew very quiet then. The voice at the back of the room very
hesitantly replied, “Yes, that’s what I had in mind.” Then the
visitor’s fist really came down as he thundered, “Of course
not. That would have doomed half of them to their death.”
God, it was quiet then, and one could scarcely hear the small
voice ask, “Which half?”4 4 Dr. E. Peacock, University of Arizona.

Originally quoted in Medical World
News (September 1, 1972). Reprinted
pg. 144 of Beautiful Evidence, Edward
Tufte (Graphics Press, 2006).
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These last two words—”Which half?"—should echo in your mind
whenever you are asked to judge the quality of evidence offered in
support of a causal hypothesis. There is simply no substitute for a
controlled experiment: not a booming authoritative voice, not even
fancy statistics.

In fact, government regulators are so fastidious in their atten-
tion to possible selection biases that, in most real clinical trials, nei-
ther the doctors nor the patients are allowed to know which drug
each person receives. Such a “double-blind” experiment avoids the
possibility that patients might simply imagine that the the latest
miracle drug has made them feel better, in a feat of unconscious
self-deception called the placebo effect. A placebo, from the Latin placere (“to

please”), is a fake treatment designed to
simulate the real one.

Some history

The notion of a controlled experiment was certainly around in pre-
Christian times. The first chapter of the book of Daniel relates the
tale of one such experiment. Daniel and his three friends Hana-
niah, Mishael, and Azariah arrive in the court of Nebuchadnezzar,
the King of Babylon. They enroll in a Babylonian school, and are
offered a traditional Babylonian diet. But Daniel wishes not to “de-
file himself with the portion of the king’s meat, nor with the wine
which he drank.” He goes to Melzar, the prince of the eunuchs,
who is in charge of the school. Daniel asks not to be made to eat
the meat or drink the wine. But Melzar responds that he fears for
Daniel’s health if he were to let them follow some crank new-age
diet. More to the point, Melzar observes, if the new students were
to fall ill, “then shall ye make me endanger my head to the king.”

So Daniel proposes a trial straight out of a statistics textbook:

Prove thy servants, I beseech thee, ten days; and let them give
us pulse to eat, and water to drink.

Then let our countenances be looked upon before thee, and
the countenance of the children that eat of the portion of
the king’s meat: and as thou seest, deal with thy servants.5 5 King James Bible, Daniel 1:12–13.

The King agreed. When Daniel and his friends were inspected
ten days later, “their countenances appeared fairer and fatter in
flesh” than all those who had eaten meat and drank wine. Suitably
impressed, Nebuchadnezzar brings Daniel and his friends in for
an audience, and he finds that “in all matters of wisdom and un-
derstanding,” they were “ten times better than all the magicians
and astrologers that were in all his realm.”
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As for a placebo-controlled trial, in which some of the patients
are intentionally given a useless treatment (the “placebo”): that
came much later.6 The first such trial seems to have taken place in 6 See “The Power of Nothing” in the

December 12, 2011 edition of The New
Yorker (pp. 30–6).

1784. It was directed by none other than Benjamin Franklin, the
American ambassador to the court of King Louis XVI of France.
A German doctor by the name of Franz Mesmer had gained some
degree of notoriety in Europe for his claim to have discovered
a new force of nature that he called “magnétisme animal,” and
which was said to have magical healing powers. The demand for
Dr. Mesmer’s services soon took off among the ladies of Parisian
high society, whom he would “Mesmerize” using a wild contrap-
tion involving ropes and magnetized iron rods.

Much to the king’s dismay, his own wife, Marie Antoinette,
was one of Mesmer’s keenest followers. The king found the whole
Mesmerizing thing frankly a bit dubious, and presumably wished
for his wife to have nothing to do with the Herr Doctor’s mag-
nétisme animal. So he convened several members of the French
Academy of Sciences to investigate whether Dr. Mesmer had in-
deed discovered a new force of nature. The panel included An-
toine Lavoisier, the father of modern chemistry, along with Joseph
Guillotin, whose own wild contraption was soon to put the King’s
difficulties with Mesmer into perspective. Under Ben Franklin’s
supervision, the scientists set up an experiment to replicate some
of Dr. Mesmer’s prescribed treatments, substituting non-magnetic
materials—history’s first placebo—for half of the patients. In many
cases, even the patients in the control group would flail about and
start talking in tongues anyway. The panel concluded that the
doctor’s method produced no effect other than in the patients’
own minds. Mesmer was denounced as a charlatan, although he
continues to exact his revenge via the dictionary.

A more recent and especially striking example of a placebo
comes from Thomas Freeman, director of the neural reconstruction
unit at Tampa General Hospital in Florida. Dr. Freeman performs
placebo brain surgery. (You read that correctly.) According to the
British Medical Journal,

In the placebo surgery that he performs, Dr Freeman bores
into a patient’s skull, but does not implant any of the fetal
nerve cells being studied as a treatment for Parkinson’s dis-
ease. The theory is that such cells can regenerate brain cells
in patients with the disease. Some colleagues decry the ex-
perimental method, however, saying that it is too risky and
unethical, even though patients are told before the operation
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that they may or may not receive the actual treatment.7 7 BMJ. 1999 October 9; 319(7215): 942

“There has been a virtual taboo of putting a patient through
an imitation surgery,” Dr. Freeman said. (Imagine that.) “This is
the way to start the discussion.” Freeman has performed 106 real
and placebo cell transplant operations since 1992. Dr. Freeman
argues that the medical history is littered with examples of unsafe
and ineffective surgical procedures—think of that small voice at
the back of the room, asking “which half?”—that were not tested
against a placebo and resulted in needless deaths, year after year,
before doctors abandoned them.

Experimental evidence is the best kind of evidence

Let’s practice here, by comparing two causal hypotheses arising
from two different data sets. The first comes from a clinical trial
in the 1980’s on a then-new form of adjuvant chemotherapy for
treating colorectal cancer, a dreadful disease that, as of 2015, has a
five-year survival rate of only 60-70% in the developed world.

The trial followed a simple protocol. After surgical removal
of their tumors, patients were randomly assigned to different
treatment regimes. Some patients were treated with fluorouracil
(the chemotherapy drug, also called 5-FU), while others received
no follow-up therapy. The researchers followed the patients for
many years afterwards and tracked which ones suffered from a
recurrence of colorectal cancer.

The outcome of the trial are in Table 9.1, below. Among the
patients who received chemotherapy, 39% (119/304) had relapsed
by the end of the study period, compared with 57% of patients
(177/315) in the group who received no therapy:

Chemotherapy? Yes No

Recurrence?
Yes 119 177

No 185 138

Table 9.1: Data from: J. A. Laurie
et. al. Surgical adjuvant therapy of
large-bowel carcinoma: An evaluation
of levamisole and the combination of
levamisole and fluorouracil. J. Clinical
Oncology, 7:1447–56, 1989. There was
also a third treatment arm of the study
in which patient received a drug called
levamisole, which isn’t discussed
here. Survival statistics on colorectal
cancer from Cunningham et. al (2010).
“Colorectal cancer.” Lancet 375 (9719):
1030–47.

The evidence strongly suggests that the chemotherapy reduced
the risk of recurrence by a substantial amount: the relative risk of
a relapse under the treatment group is 0.7, with a 95% confidence
interval of (0.59, 0.83).

We can be confident that this evidence reflects causality, and
not merely correlation, because patients were randomly assigned
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to the treatment and control groups. Randomization ensures bal-
ance: that is, it ensures that there are no systematic differences
between the two groups with respect to any confounding factors
that might be correlated with the patients’ survival chances. This
would obviously not be true if we had non-randomly assigned all
the healthiest patients to the treatment group, and all the sickest
patients to the control group.

It’s worth emphasizing a key fact here. Randomization ensures
balance both for the possible confounders that we can measure
(like a patient’s age or baseline health status), as well as for the
ones we might not be able to measure (like a patient’s will to live).
This is what makes randomization so powerful, and randomized
experiments so compelling. We don’t even have to know what the
possible confounding variables are in order for the experiment to
give us reliable information about the causal effect of the treat-
ment. Randomization balances everything, at least on average.

Next, let’s examine data from a study from the 1990’s con-
ducted in sub-Saharan Africa about HIV, another dreadful disease
which, at the time, was spreading across the continent with alarm-
ing speed. Several studies in Kenya had found that men who were
uncircumcised seemed to contract HIV in greater numbers. This
set off a debate among medical experts about the extent to which
this apparent association had a plausible biological explanation.

Circumcised? Yes No

HIV positive?
Yes 105 85

No 527 93

Table 9.2: Data from Tyndall et. al.
Increased risk of infection with hu-
man immunodeficiency virus type 1

among uncircumcised men presenting
with genital ulcer disease in Kenya.
Clin. Infect. Dis. 1996 Sep; 23(3):449–53.

Table 9.2, above, shows some data from one of these studies, which
found that among those recruited for the survey, 48% of uncir-
cumcised men were HIV-positive, versus only 17% of circumcised
men. The evidence seems to suggest that circumcision reduced a
Kenyan man’s chance of contracting HIV by a factor of 3.

Evaluating the evidence. If you suffer from colon cancer, should
you get chemotherapy? Almost certainly: the researchers in the
first study randomized and intervened, giving chemotherapy
only to a random subset of patients. Unless you believe that the
chemotherapy patients in this trial just happened to be much luck-
ier than their peers, this result establishes that the reduction in
recurrence must have been caused by the treatment.
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But should all Kenyan men head straight to a surgeon? In this
case we can’t really be sure. The researchers in the second study
neither randomized nor performed any snipping themselves. They
merely asked whether each man was circumcised. It is therefore
possible that they’ve been fooled by a confounder. To give one
plausible example, a man’s religious affiliation might affect both
the likelihood that he is circumcised and the chances that he con-
tracts HIV from unprotected sex. If that were true, the observed
correlation between circumcisions and HIV rates might be simply
a byproduct of an imbalanced, unfair comparison, rather than a
causal relationship.8 8 The authors of the study were ob-

viously aware of these possible con-
founders. They used a technique called
logistic regression to attempt to account
for some them and isolate the putative
effect of circumcision on HIV infection.
This is like our fourth method for mak-
ing balanced comparisons: use a model
to adjust for confounders statistically.
See the original paper for details.

Natural experiments

A randomized, controlled experiment is the gold standard of ev-
idence for a causal hypothesis. Yet many times an experiment
is impossible, impractical, unethical, or too expensive in time or
money. In these situations, it often pays to look for something
called a natural experiment, also called a quasi-experiment. A natural
experiment is not something that you, as the investigator, design.
Rather, it is an “experiment” where nature seems to have done the
randomization and intervention for you, thereby giving you the
same type of balance between treatment and control groups that
you’d expect to get out of a real experiment.

This idea is best understood by example. Suppose you want to
study the effect of class size on student achievement. You reason
that, in smaller classes, students can get more individual attention
from the instructor, and that intructors will feel a greater sense of
personal connection to their students. All else being equal, you
believe that smaller class sizes will help students learn better.

A cheap, naïve way to study this question would be to compare
the test scores of students in small classes to those of students in
larger classes. Any of these confounders, however, might render
such a comparison highly unbalanced, and therefore dubious:
(1) students in need of remediation are sometimes put in very
small classes; (2) highly gifted students are also sometimes put
in very small classes; (3) richer school districts can afford both
smaller classes and many other potential sources of instructional
advantage; or (4) better teachers successfully convince their bosses
to let them teach the smaller classes themselves.

An expensive, intelligent way to study this question would
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Question Problem Natural experiment Lingering issues

Does being rich make
people happy?

Even if richer people are
happier on average,
maybe happiness and
success are the common
effect of a third factor. Or
maybe the rich grade on a
different curve than the
rest of us.

Compare a group of
lottery winners with a
similar group of people
who played the lottery but
didn’t win.

Lottery winners may play
the lottery far more often
than people who played
the lottery but didn’t win,
which might correlate
with other important
differences.

Does smoking increase a
person’s risk for Type-II
diabetes?

People who smoke may
also engage in other
unhealthy behaviors at
systematically different
rates than non-smokers.

Compare before-and-after
rates of diabetes in cities
that recently enacted bans
on smoking in public
places.

Maybe the incidence of
diabetes would have
changed anyway.

Do bans on mobile phone
use by drivers in school
zones reduce the rate of
traffic collisions?

Groups of citizens that
enact such bans may differ
systematically in their
attitudes toward risk and
behavior on the road.

Go to Texarkana, split by
State Line Avenue.
Observe what happens
when Texas passes a ban
and Arkansas doesn’t.

There may still be
systematic differences
between the two halves of
the city.

Table 9.3: Three hypothetical examples
of natural experiments.

be to design an experiment, in conjunction with a scientifically
inclined school district, that randomly assigned both teachers and
students to classes of varying size. In fact, a few school systems
have done exactly this. A notable experiment is Project STAR in
Tennessee—an expensive, lengthy experiment that studied the
effect of primary-school class sizes on high-school achievement,
and showed that reduced class sizes have a long-term positive
impact both on test scores and drop-out rates.9 9 The original study is described in

Finn and Achilles (1990). “Answers and
Questions about Class Size: a Statewide
Experiment.” American Educational
Research Journal 28, pp. 557–77

But suppose you are neither naïve nor rich, and yet still want
to study the question of whether small class sizes improve test
scores. If you’re in search of a third way—one that’s better than
merely looking at correlations, yet cheaper than a full-fledged
experiment—you might be interested to know the following fact
about the Israeli school system.

[I]n Israel, class size is capped at 40. Therefore, a child in a
fifth grade cohort of 40 students ends up in a class of 40 while
a child in a fifth grade cohort of 41 students ends up in a class
only half as large because the cohort is split. Since students
in cohorts of size 40 and 41 are likely to be similar on other
dimensions, such as ability and family background, we can
think of the difference between 40 and 41 students enrolled as
being “as good as randomly assigned.”10 10 Angrist and Pischke (2009). Mostly

Harmless Econometrics, Princeton Univer-
sity Press, p. 21This is a lovely example of a natural experiment—something

you didn’t design yourself, but that is almost as good as if you
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had. The researchers in this study compared the students in a
group of 40 (“control group,” in one large class) versus the stu-
dents in a group of 41 (“treatment group,” split into two smaller
classes). This is a plausibly random assignment: the “randomiza-
tion mechanism” is whether a student fell into a peer group of 40

versus a peer group of 41, and we would not expect this difference
to be confounded by anything else that might predict test scores.
Therefore, if we see a big difference in performance between the
two groups, the most likely explanation is that class size caused
the difference.

Some natural experiments, of course, are better than others.
Consider the examples in Table 9.3, on page 188. For each one, ask
yourself two questions. (1) What are the “treatment” and “con-
trol” groups? (2) How balanced are these two groups? (Said an-
other way: how good is the quasi-randomization of cases to these
groups?) Think carefully about each one, and you may begin to
see “experiment” versus “non-experiment” as the black and white
ends of a spectrum, with many shades of grey in between.

Matching

To estimate a causal effect by matching, we artificially construct a
balanced data set out of an unbalanced one, by explicitly matching
treated cases with similar control cases. We then compare the out-
comes in treatment versus control groups, using only the balanced
data set. This is most easily seen by example.

An example: the value of going green

For many years now, both investors and the general public have
paid increasingly close attention to the benefits of environmen-
tally conscious (“green”) buildings. There are both ethical and
economic forces at work here. To quote a recent report by Mercer,
an investment-consulting firm, entitled “Energy efficiency and real
estate: Opportunities for investors”:

Investing in energy efficiency has two intertwined virtues
that make it particularly attractive in a world with a changing
climate and a destabilized economy: It cuts global-warming
greenhouse gas emissions and saves money by reducing en-
ergy consumption. Given that the built environment accounts
for 39 percent of total energy use in the US and 38 percent of
total indirect CO2 emissions, real estate investment represents
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one of the most effective avenues for implementing energy
efficiency.

This only scratches the surface. In commercial real estate, issues
of eco-friendliness are intimately tied up with ordinary decisions
about how to allocate capital. Every new project involves negoti-
ating a trade-off between costs incurred and benefits realized over
the lifetime of the building. In this context, the decision to invest
in an eco-friendly building could pay off in at least four ways.

(1) Every building has the obvious list of recurring costs: water,
climate control, lighting, waste disposal, and so forth. Almost
by definition, these costs are lower in green buildings.

(2) Green buildings are often associated with indoor environ-
ments that are full of sunlight, natural materials, and various
other humane touches. Such environments, in turn, might re-
sult in higher employee productivity and lower absenteeism,
and might therefore be more coveted by potential tenants. The
financial impact of this factor, however, is rather hard to quan-
tify ex ante; you cannot simply ask an engineer in the same
way that you could ask a question such as, “How much are
these solar panels likely to save on the power bill?”

(3) Green buildings make for good PR. They send a signal about
social responsibility and ecological awareness, and might
therefore command a premium from potential tenants who
want their customers to associate them with these values. It
is widely believed that a good corporate image may enable
a firm to charge premium prices, to hire better talent, and to
attract socially conscious investors.

(4) Finally, sustainable buildings might have longer economi-
cally valuable lives. For one thing, they are expected to last
longer, in a direct physical sense. (One of the core concepts of
the green-building movement is “life-cycle analysis,” which
accounts for the high front-end environmental impact of ac-
quiring materials and constructing a new building in the first
place.) Moreover, green buildings may also be less susceptible
to market risk—in particular, the risk that energy prices will
spike, driving away tenants into the arms of bolder, greener
investors.

Of course, much of this is mere conjecture. At the end of the
day, tenants may or may not be willing to pay a premium for
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Figure 9.4: Green buildings seem to
earn more revenue per square foot, on
average, than non-green buildings.

rental space in green buildings. We can only find out by carefully
examining data on the commercial real-estate market and compar-
ing “green” versus “non-green” buildings. By “green,” we mean
that a commercial property has received some official certification,
because its energy efficiency, carbon footprint, site selection, and
building materials meet certain environmental benchmarks, as
certified by outside engineers.11 11 The two most common certifications

are LEED and EnergyStar; you can
easily find out more about these rating
systems on the web, e.g. at www.usgbc.
org.

Let’s look at some data on 678 green-certified buildings in the
United States, together with 6,298 non-green buildings in similar
geographic areas. The boxplot above shows that, when we mea-
sure revenue by a building’s rental rate per square foot per year,
green buildings tend to earn noticeably higher revenue (mean =
26.97) than non-green buildings (mean = 24.51). That’s a difference
of $2.46 per square foot, or nearly a 10% market premium.

Original data
Non-green buildings Green buildings

Sample size 6928 678

Mean revenue/sq ft. 24.51 26.97

Mean age 49.2 23.9

Class A 37% 80%
Class B 48% 19%
Class C 15% 1%

Table 9.4: Covariate balance for the
original data. Class A, B, and C are
relative classifications within a specific
real-estate market. Class A build-
ings are generally the highest-quality
properties in a given market. Class B
buildings are a notch down, but still of
reasonable quality. Class C buildings
are the least desirable properties in a
given market.

www.usgbc.org
www.usgbc.org
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However, there’s a problem with this comparison. As Table 9.4
shows, the green buildings tend to be newer than the non-green
buildings, and are more likely to be “Class A” buildings.

So the important question is: do green buildings command a
market premium because they are green, or simply because they
are newer, better buildings in the first place? We can’t tell by sim-
ply computing the average revenue in each group, because the
green (“treatment”) and non-green (“control”) groups are highly
unbalanced with respect to some important confounders.

This is where matching comes in. Matching means constructing
a balanced data set from an unbalanced one. It involves three
steps:

(1) For each case in the treatment group, find the case in the con-
trol group that is the closest match in terms of confounding
variables, and pair them up. Put these matched pairs into a
new matched data set, and discard the cases in the original
data set for which there are no close matches.

(2) Verify covariate balance for the matched data set, by checking
that the confounders are well balanced between the treatment
and control groups.

(3) Assuming that the confounders are approximately balanced,
then compare the treatment-group outcomes with the control-
group outcomes, using only the matched pairs.

Matching relies on a simple principle: compare like with like. In
this example, that means if we have a 25-year-old, Class A build-
ing with a green rating, we try to find another 25-year old, Class A
building without a green rating to compare it to.

In this particular example, once we’ve constructed the data set
of matched pairs, the confounder variables are much more closely

Matched data
Non-green buildings Green buildings

Sample size 678 678

Mean revenue/sq ft. 25.94 26.97

Mean age 23.9 23.9

Class A 80% 80%
Class B 19% 19%
Class C 1% 1%

Table 9.5: Covariate balance for the
matched data.
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balanced between the treatment and control groups (see Table 9.5).
A comparison of revenue rates for this matched data set makes
the premium for green buildings look a lot smaller: $26.97 versus
$25.94, or about a 4% premium. Compare that with the 10% green
premium we estimated from the original, unmatched data.

How do we actually find matches? The nitty-gritty algorithmic de-
tails of actually finding good matched pairs of cases are best left
to the experts who write the software for these things. The two
most common types of matching are called nearest-neighbor search
and propensity-score matching; follow the links if you’d like to know
more. In R, the package MatchIt uses propensity-score matching
as a default; this is a very commonly used algorithm in real-world
data analysis. In addition, the paper linked here12 has a much 12 “Matching Methods for Causal Infer-

ence: A Review and a Look Forward.”
Elizabeth A. Stuart, Statistical Science,
2010.

more detailed overview of different matching methods.

Matching isn’t a silver bullet: a bigger example

If you’ve ever been admitted to the intensive-care unit at a hospi-
tal, you may have undergone a diagnostic procedure called right
heart catheterization, or RHC. RHC is used to see how well a pa-
tient’s heart is pumping, and to measure the pressures in that pa-
tient’s heart and lungs. RHC is widely believed to be helpful, since
it allows the doctor to directly measure what’s going on inside a
patient’s heart. But it is an invasive procedure, since it involves in-
serting a small tube (the catheter) into the right side of your heart,
and then passing that tube through into your pulmonary artery.
It therefore poses some risks—for example, excessive bleeding,
partial collapse of a lung, or infection.

A natural question is: do the diagnostic benefits of RHC out-
weight the possible risks? But this turns out to be tricky to answer.
The reason is that doctors would not consider it ethical to run a
randomized, controlled trial to see if RHC improves patient out-
comes. As the authors of one famous study from the 1990s pointed
out:13 13 “The effectiveness of right heart

catheterization in the initial care of criti-
cally ill patients.” Connors et. al. Journal
of the American Medical Association. 1996

Sep 18; 276(11):889-97.

Many cardiologistics and critical care physicians believe that
the direct measurement of cardiac function provided by right
heart catheterization (RHC) . . . is necessary to guide therapy
for certain critically ill patients, and that such management
leads to better patient outcomes. While the benefit of RHC
has not been demonstrated in a randomized controlled trial
(RCT), the popularity of this procedure, and the widespread

https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Propensity_score_matching
https://projecteuclid.org/euclid.ss/1280841730
http://www.hopkinsmedicine.org/healthlibrary/test_procedures/cardiovascular/right_heart_catheterization_135,40/
http://www.hopkinsmedicine.org/healthlibrary/test_procedures/cardiovascular/right_heart_catheterization_135,40/
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Original data Matched data
No RHC RHC No RHC RHC

Sample size 3551 2184 2184 2184

180-day survival rate 0.370 0.320 0.354 0.320

mean APACHE score 50.934 60.739 57.643 60.739

Trauma 0.005 0.016 0.008 0.016

Heart attack 0.030 0.043 0.036 0.043

Congestive heart failure 0.168 0.195 0.209 0.195

Sepsis 0.148 0.321 0.24 0.321

Table 9.6: A before-and-after table of
summary statistics showing covariate
balance for the observational study on
right-heart catheterization. The entries
for trauma, heart attack, etc. show
rates of these complications in the two
groups. The left half of the table shows
the original data set, while the right
half shows the matched data set.

belief that it is beneficial, make the performance of an RCT
difficult. Physicians cannot ethically participate in such a
trial or encourage a patient to participate if convinced the
procedure is truly beneficial.

We’re therefore left with only observational data on the effec-
tiveness of RHC—which, on the surface, doesn’t look good! Here’s
the data from the study quoted above, showing that critically
ill patients undergoing RHC actually have a worse 180-day sur-
vival rate (698/2184, or 32%) than patients not undergoing RHC
(1315/3551, or 37%):

No RHC RHC

Survived 180 days 1315 698

Died within 180 days 2236 1486

What’s going on here? Should we conclude that right heart
catheterization is actually killing people, and that the doctors are
all just plain wrong about its putative benefits?

Not so fast. The problem with this conclusion is that the treat-
ment (RHC) and control (no RHC) groups are heavily unbalanced
with respect to baseline measures of health. Put simply, the pa-
tients who received RHC were a lot sicker to begin with, so it’s no
surprise that they have a lower 6-month survival rate. To cite a few
examples: the RHC patients were three times more likely to have
suffered acute trauma, 50% more likely to have had a heart attack,
and 16% more likely to be suffering from congestive heart failure.
The RHC patients also had an average APACHE score that was 10

points higher than the non-RHC patients.14 The left half of Table

14 The APACHE score is a composite
severity-of-disease score used by hos-
pital ICUs to estimate which patients
have a higher risk of death. Patients
with higher numbers have a higher risk
of death.

https://en.wikipedia.org/wiki/APACHE_II
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9.6 shows these rates of various complications for the two groups
in the original data set. They’re quite different, implying that the
survival rates of these two groups cannot be fairly compared.

And what about after matching? Unfortunately, Table 9.6 shows
that, even after matching treatment cases with controls having
similar complications, the RHC group still seems to have a lower
survival rate. The gap looks smaller than it did before, on the
unmatched data—a 32% survival rate for RHC patients, versus a
35.4% survival rate for non-RHC patients—but it’s still there.

Again we find ourselves asking: what’s going on? Is the RHC
procedure actually killing patients? Well, it might be, at least indi-
rectly! The authors of the study speculate that one possible expla-
nation for this finding is “that RHC is a marker for an aggressive
or invasive style of care that may be responsible for a higher mor-
tality rate.” Given the prevalance of overtreatment within the
American health-care system, this is certainly plausible.

But we can’t immediately jump to that conclusion on the basis
of the matched data. In fact, this example points to a couple of
basic difficulties with using matching to estimate a causal effect.

The first (and most important) difficulty is that we can’t match
on what we haven’t measured. If there is some confounder that we
don’t know about, then we’ll never be able to make sure that it’s
balanced between the treatment and control groups within the
matched data. This is why experiments are so much more per-
suasive: because they also ensure balance for unmeasured con-
founders. The authors of the study acknowledge as much, writing:

A possible explanation is that RHC is actually beneficial and
that we missed this relationship because we did not ade-
quately adjust for some confounding variable that increased
both the likelihood of RHC and the likelihood of death. As we
found in this study, RHC is more likely to be used in sicker
patients who are also more likely to die.

Another possible explanation is that we simply haven’t been
able to match treatment cases with control cases very effectively.
The right half of Table 9.6 shows that covariate balance for the
matched data is noticeably better than for the unmatched data, but
it’s not perfect. We still see some small differences in complication
rates and APACHE scores between the treatment and control
group. There are two main reasons for this.

(1) First, and most importantly, although finding a match on one
or two variables is relatively easy, finding a match on several

https://en.wikipedia.org/wiki/Unnecessary_health_care
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variables is pretty hard. Think of this in terms of your own
life experience—for example, in seeking a spouse or partner. It
probably isn’t too hard to find someone who’s a good match
for you in terms of your interests and your sense of humor.
But if you require that this person also match you in terms
of age, career, education, home town, height, weight, looks,
and favorite sport, then you’re a lot less likely to find a match.
Picky people are less likely to find a satisfying match in life. For
this same reason, it’s unlikely that we’ll be able to find an
exact match for each treatment case in a matching problem,
especially with lots of possible confounders.

(2) Second, finding matches for cases with rare confounders is
especially hard—by definition, since the confounder is rare!

These two points underline a basic difficulty with matching: per-
fect matches usually don’t exist, and we have no choice but to
accept approximate matches. In practice, therefore, we give up on
the requirement that every single pair of matched observations is
similar in terms of all possible confounders, and settle for having
matched groups that are similar in their confounders, on average.
That’s why it’s so important to check the covariate balance after
finding matched pairs, to make sure that there’s nothing radically
different between the two groups.

Model-based statistical adjustment

A fourth identification strategy for estimating a causal effect is to
build a regression model. If some important (and quite strong)
assumptions are met, then such a model is capable of isolating a
causal relationship between predictor and response, by adjusting
for the effects of confounders statistically, rather than experimen-
tally. You may have heard this process described as “statistical
control” or “statistical correction,” both in the popular media and
in scientific publications:

• “Schatz’s numbers are unique in that they evaluate each play
against the league average for plays of its type, adjust for the
strength of the opponents’ defense, and even try to divide
credit for a given play among teammates.”15

15 “Pigskin Pythagoras: A guy from
Framingham tries to remake the muddy
field of football statistics.” Boston Globe,
February 1, 2004

• “The committee concluded that a statistical adjustment of the
1990 census leads to an improvement of the counts.”16

16 “Judge must decide on census adjust-
ment.” Chicago Tribune, 6/8/1992
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• “Further adjustment for weight change and leukocyte count
attenuated these risks substantially.”17 17 “Smoking, Smoking Cessation, and

Risk for Type 2 Diabetes Mellitus:
A Cohort Study.” Annals of Internal
Medicine, January 4, 2010

Estimating a causal effect using a regression model is, in prin-
ciple, no different than estimating a partial relationship, which
we’ve already learned how to do:

(1) Build a multiple regression model for the outcome (y) versus
the predictor of interest (x) and other possible confounders;

(2) Interpret the coefficient on the x variable of interest as the par-
tial linear relationship between y and x, holding confounders
constant.

The key question is: under what circumstances can we interpret
the partial relationship in a multiple regression model as the causal
effect of x on y? By causal effect, you should think in terms of the
counterfactuals we entertained at the beginning of the chapter: if
I were to intervene and change x by one unit, holding all other
variables constant, then how much would y change on average?

There are three important assumptions that must be met in
order to give a causal interpretation to a regression coefficient.
First, your model must include all confounding variables (that is,
variables that have a causal effect on both the treatment assign-
ment and the outcome). Second, the model must be correct. In this
context, “correct” means that you have included the right interac-
tions among confounding variables, and that you have specified
the right functional form of the model (linear, polynomial, power
law, etc.). Finally, you must not include any post-treatment effects
as covariates in the model. A post-treatment effect is something
causally “downstream” from the treatment variable, and that be-
comes known only as a result of receiving or not receiving the
treatment. This is a subtle point, and we won’t discuss it in de-
tail. But the important thing is: include those confounders, and
only those confounders, that affect the allocation of cases to the
treatment and control groups.

If, and only if, these three assumptions about your model are
true, then the regression coefficient of y on x has a causal inter-
pretation. If, on the other hand, there are any unmeasured con-
founders affecting your x and y variable, then the coefficient of y
on x measures association, not causation. This is called omitted-
variable bias.18 18 Or lurking-variable bias.

Another way of saying this is that if the possible confounders
are all observed, then accurately estimating the causal effect of
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x on y really just boils down to modeling the data well, and not
using that model to extrapolate beyond the range of available
data. However, the assumption that we’ve observed all relevant
confounders, and can therefore adjust for them appropriately, is
very strong. It’s also unverifiable using the data; as with matching,
you have to believe this assumption, and convince people of it, on
extrinsic grounds.

Using regression analysis to estimate causal effects is a big,
serious topic. Here are two full books about it:

• Causality, by Judea Pearl

• Observational Studies, by Paul Rosenbaum

For some additional, more easily digestible advice on choosing
which covariates to include in a causal model, see Chapter 17 of
Daniel Kaplan’s book on statistical modeling.19 19 Kaplan also has a good explanation

for why it’s not a good idea to include
post-treatment effects (i.e. variables
causally downstream of the treatment)
as covariates in a regression model.

Matching versus regression, or matching and regression?

We’ve seen that it’s easiest to infer causality if the cases in the
treatment group are comparable to those in the control group. One
way to do this is via matching: explicitly constructing a balanced
data set from an unbalanced one. Another way to do this is via
regression: adjust for confounders using a statistical model, so that
we can evaluate the partial relationship between treatment and
response, holding confounders constant.

This makes it sound as though regression and matching are
competing identification strategies for causal inference. Sociolog-
ically speaking, there is certainly some truth to this, in that some
people tend to use matching more often, and others tend to use
regression more often. So which one should you use?

In the real world, if you’re going to use only one strategy or the
other, my advice is to use matching, mainly for three reasons:

(1) Matching is a lot easier for non-experts to understand, since
you can point to the matched treatment and control groups
and show that they are visibly balanced with respect to ob-
served confounders. In other words, the nature of the “bal-
anced comparison” being made via matching is much more
transparent than the idea of a partial slope in a regression
model. This will make it easier for you to convince others of
your conclusions.

http://www.mosaic-web.org/go/StatisticalModeling/Chapters/Chapter-17.pdf
http://www.mosaic-web.org/go/StatisticalModeling/Chapters/Chapter-17.pdf
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(2) Matching is a bit more robust than regression, at least in their
“off the shelf” versions. The regression-based approach to
causal inference relies on a whole bunch of hard-to-verify
assumptions: linearity, all necessary interactions included,
and so forth. By comparison, it’s a lot easier to verify co-
variate balance using before-and-after tables of summary
statistics. (Of course, neither method is robust to unmeasured
confounders—only an experiment can fix that problem.)

(3) Unwarranted extrapolations are more apparent when match-
ing than when using regression. Suppose that the treatment
and control groups have highly nonoverlapping distributions
of confounders—for example, that most the men are in the
treatment group and most of the women in the control group.
In such cases, the data are inherently limited in what they can
tell us about the treatment–response relationship in this region
of nonoverlap (i.e. how the treatment will work for women).
This lack of overlap will be obvious if you use matching, be-
cause you’ll still have drastic post-match covariate imbalances
that will stick out like a sore thumb. But the lack of overlap
will be less obvious if you throw all the confounders into a
multiple regression model without plotting your data.

In summary, it’s easier to convince others with matching, and
easier to fool yourself with regression. These aren’t intrinsic statis-
tical advantages to matching; they are merely practical advantages
worth keeping in mind.

It turns out, however, that there’s no need to choose between
matching and regression. Better still is to use both matching and
regression, to get better estimates of causal effects than either
technique is capable of getting on its own. In other words: first
run matching to get an approximately balanced data set. Then
run a regression model for the response versus the treatment
variable and the confounders, to correct for minor imbalances
in the matched data set. Under this approach, the primary role
of matching is to correct for major covariate imbalances between
the groups, while the primary role of regression is to model the
treatment–response relationship in a way that adjusts for any mi-
nor confounding that remains in the matched data set.

There’s one other major advantage of using matching and re-
gression together. By fitting a regression model to a matched data
set, you are able to search for interactions between the treatment
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variable and possible confounders. For example, what if the treat-
ment effect is different for men than for women? You can discover
this kind of modulating effect much more easily using a regression
model than you can with matching alone.

In summary, matching and regression make for an excellent
pair. There’s rarely a good reason to use just one or other!



10
Expected value and probability

Risky business

For most of us, life is full of worry. Some people worry about
tornados or earthquakes; other people won’t get on an airplane.
Some people worry more about lightning; others, about terror-
ists. And then there are the everyday worries: about love, money,
career, status, conflict, kids, and so on.

Jared Diamond worries a lot, too—about slipping in the shower.
Dr. Diamond is one of the most respected scientists in the

world. Though he originally trained in physiology, Diamond
left his most lasting mark on the popular imagination as the au-
thor of Guns, Germs, and Steel: The Fates of Human Societies. This
Pulitzer-prize-winning book draws on ecology, anthropology, and
geography to explain the major trends of human migration, con-
quest, and displacement over the last few thousand years.

Strangely enough, Diamond began to worry about slipping in
the shower while conducting anthropological field research in the
forests of New Guinea, 7,000 miles away from home, and a long
day’s walk from any shower. The seed of this worry was planted
one day while he was out hiking in the wilds with some New
Guineans. As night fell, Diamond suggested that they all make
camp under the broad canopy of a nearby tree. But his compan-
ions reacted in horror, and refused. As Diamond tells it,

They explained that the tree was dead and might fall on us.
Yes, I had to agree, it was indeed dead. But I objected that it
was so solid that it would be standing for many years. The
New Guineans were unswayed, opting instead to sleep in the
open without a tent.1 1 Jared Diamond, “That Daily Shower

Can Be a Killer.” New York Times,
January 29. 2013, page D1.The New Guineans’ fear initially struck Diamond as overblown.

How likely could it possibly be that the tree would fall on them
in the night? Surely they were being paranoid. For a famous pro-
fessor like Diamond to get crushed by a tree while sleeping in the
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forest would be the kind of freakish thing that made the newspa-
per, like getting struck by lightning at your own wedding, or being
killed by a falling vending machine.

But in the months and years after this incident, it began to
dawn on Diamond that the New Guineans’ “paranoia” was well
founded. A dead tree might stay standing for somewhere between
3 and 30 years, so that the daily risk of a toppling was somewhere
between 1 in 1,000 and 1 in 10,000. This is small, but far from neg-
ligible. Here’s Diamond again:

[W]hen I did a frequency/risk calculation, I understood their
point of view. Consider: If you’re a New Guinean living in the
forest, and if you adopt the bad habit of sleeping under dead
trees whose odds of falling on you that particular night are
only 1 in 1,000, you’ll be dead within a few years.2 2 ibid.

Having absorbed this attitude about the importance of everyday
habits, Diamond began to apply it to his own life. He refers to it
as a “hypervigilant attitude towards repeated low risks,” or more
memorably, “constructive paranoia.”

Take the simple act of showering. If you’re 75 years old, as Di-
amond was when he recounted this story, you can expect to live
another 15 years. That’s 15×365 = 5,475 more daily showers. So
if your risk of a bad slip is “only” one in a thousand, you should
expect to break your hip, or worse, about five times over that pe-
riod. The implication is that, if you want a good chance of being
around to blow out 90 candles, you must ensure that, by your own
careful behavior, you reduce the risk of slipping in the shower to
something much, much lower than one in a thousand.

And the same goes for all those other small risks we face day
in, day out. Think about crossing a busy street, driving at night,
touching the handle of a public toilet, or venturing out with the
mad dogs and Englishmen into the mid-day sun. Each time the
chance of a disaster is low. But most of us perform these actions
again and again—and if we’re slapdash about it, the expected
number of disasters over several years can be alarmingly high. Di-
amond’s conclusion? He needed to ensure that, for each repeated
exposure to one of these risks, the chance of a disaster wasn’t just
low, but extremely low.

Expected value and the NP rule

Jared Diamond’s philosophy of constructive paranoia arises from
an understanding of expected value. This concept has a formal
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mathematical definition, but the basic idea is simple. Think about
risks like slipping in the shower, or having a dead tree fall on you
in the night. These kinds of risks involve many repeated exposures
to the same chance event. In the long run, the expected number of
events is the frequency of encounters (N), times the probability of
the event in a single encounter (P).

This is such a common scenario that we like to give it a name:
the NP rule, where expected value = frequency times risk, or
N × P. For example, let’s say that the risk of a dead tree falling
down in the night is one chance in a thousand (so P = 0.001), and
that you and 99 friends each sleep under your own dead tree every
night for a year (so N = 365 × 100 = 36,500 person-nights of expo-
sure). In your cohort of 100, how many would you expect to get
crushed by a tree? The math of the NP rule doesn’t look good; you
can expect about 36 of you to be crushed.

Expected crushings = (Risk of dead tree falling)× (Number of exposures)

=
1

1000
× (365× 100)

= 36.5 .

What about some more familiar risks?

Of course, you probably don’t live in a forest in New Guinea. How
does the NP rule play out in thinking about risks for a typical
21st-century citizen of a western democracy?

To get specific, let’s look at some expected values for an imag-
inary cohort of 100,000 Americans—about the size of a small city,
like Boulder or Green Bay. Table 10.1 shows how many of these
100,000 people we would expect to die in any given year due to
various causes.3 This is exactly the kind of table that a public- 3 Centers for Disease Control, http:

//www.cdc.gov/nchs/fastats/.health organization like the Gates Foundation might look at it in
order to decide what kinds of initiatives would have the biggest
return on investment, or that a life-insurance company would look
at to set your premiums.

There are two take-away lessons from Table 10.1. First, the
expected number of deaths due to the headline-grabbing causes
in the bottom half of the table—from tornadoes to shark attacks to
mass shootings—is tiny. Of course, tornadoes, sharks, and crazed
gunmen are still very dangerous (P is high). But they’re also rare
(N is small). Remember: expected value = N × P.

http://www.cdc.gov/nchs/fastats/
http://www.cdc.gov/nchs/fastats/
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Cause Expected deaths

Heart disease 203

Cancer 195

Respiratory disease 50

Stroke 42

Alzheimer’s 28

Diabetes 25

Accidental poisoning 12

Car accident 11

Slips/falls 10

Homicide 5

Eating raw meat 2

Choking 1.5
Pregnancy 0.2
Dog bite 0.01

Falling vending machine 0.001

Hurricane 0.03

Tornado 0.02

Mass shooting 0.01

Lightning strike 0.01

Shark attack 0.0003

Plane crash 0.0001

(per 100,000)

Table 10.1: Expected deaths due to
various causes over one year in an
imaginary cohort of 100,000 Americans,
of whom 99,200 are expected to survive.

Second, in light of these numbers, it might be wise to heed
Jared Diamond’s advice. While most people die of disease, can-
cer, or the depredations of age, a shockingly high number die in
preventable accidents. Even unusual kinds of accidents are still
far more common than the six sensational causes of death in the
bottom half of the table. In fact, we’d expect ten times as many
people to die from a falling vending machine as from a falling
plane, and 20 times as many to die from choking as from all the
bottom six causes put together. Of course, eating lunch or buying
a granola bar are usually safe, so P is small. But people do these
things every day, so N is huge.

Studies, however, repeatedly find that our concept of danger is
woefully incomplete: we think only about P, and rarely about N.
As a result, we overestimate the chance of dying in some dramatic
event like those in the bottom half of Table 10.1, while simulta-
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neously underestimating the chance of dying from one of the
familiar causes in the top half.

To be fair, this has a lot to do with living in a world of mass
media and near-instant communication. Thousands of people
anonymously choke to death every year. But if someone gets at-
tacked by a shark or blows himself up in a train station anywhere
in the world, you will hear about it, no matter how unlikely the
real risk. As folks in the statistics business put it: newspapers love
numerators. While this brings a website plenty of clicks, it also
short-circuits our natural cues for reasoning intuitively about risk.

But dwelling on the spectacular numerators isn’t a smart way
to stay alive. Many of life’s mundane risks, from car accidents to
skin cancer, do not strike out of the blue. Rather, they are direct
results of our own day-to-day behavior. So follow your mother’s
advice. Look both ways, don’t drive while tired, wear sunscreen,
wash your hands—and don’t sleep under dead trees.

The NP rule in health care and social policy

The concept of expected value is central to any cost/benefit anal-
ysis. For example, the same idea behind the NP rule is used rou-
tinely to evaluate medical procedures.

In a medical context, an expected-value calculation is usually
phrased in terms of a number called the NNT: the number needed
to treat. Here’s the idea. Suppose you invent a perfect drug for
some intractable disease. Anyone who takes the drug is cured, and
it’s the only cure. Here, we’d say that your drug has a “number
needed to treat” of one: if you treat one person, you cure one
person. You can’t do any better than this.

Now let’s say that the drug has only a 50% chance of curing
someone (P = 0.5). In that case, if you treated N = 2 people, you
would expect to cure one patient: N × P = 1. Here, we’d say that
the NNT is two: treat two, cure one.

An NNT of two is really good. But if you needed to treat 100 or
1000 people to cure just a single person, you might view the drug
a bit more skeptically. More generally, suppose that a medical
procedure has probability P of offering some specific health benefit
to any one person—like curing a disease, or offering one extra year
of life. If we treat N people, we would expect that N × P people
would get the benefit. How many people do we need to treat so
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Treatment Benefit NNT

Defibrillation for cardiac arrest Prevents death 2.5
Corticosteroid injection for tennis elbow Reduces pain 4

Zinc for the common cold Reduces symptoms 5

Antibiotics for conjunctivitis Full recovery within 5 days 7

Bone-marrow transplant after chemo for leukemia Prevents relapse 9

Strength and balance programs for the elderly Prevents falls 11

Warfarin for atrial fibrillation Prevents stroke 25

Aspirin, for patients with known heart disease Prevents heart attack or stroke 50

a Mediterrenean diet Prevents heart disease 61

Magnesium sulfate for preeclampsia in pregnancy Prevents seizures 90

Statins, for patients with no known heart disease Prevents heart attack 104

CT scans of long-term smokers Detects lung cancer 217

Aspirin, for patients with no known heart disease Prevents heart attack or stroke 1667

Table 10.2: Numbers sourced from
Cochrane reviews, as summarized by
the NNT website: http://www.thennt.
com.

that the expected number helped, N × P, is one? That number is
called the procedure’s number needed to treat, or NNT.4 Similarly, 4 This is a slight simplification. The

NNT is more typically defined to be the
number needed to treat in order to offer
some benefit to one additional patient
versus some baseline, like a placebo or
the next-best drug.

for a medical test like a mammogram or a prostate exam, there’s
the NNS: the “number needed to screen.”

Table 10.2 has some estimates of the number needed to treat for
some common medical interventions.

Weighing medical harms and benefits

The number needed to treat is a big deal to doctors, health insur-
ers, and governments that run national health services. A high
NNT means a low expected value for the number of patients
helped. Essentially, it’s a measure of waste: if a treatment has an
NNT of 100, then on average, it will fail to yield the stated benefit
for 99 out of 100 patients.

Of course, we don’t know who those 99 will be ahead of time.
And if the treatment is cheap and mostly harmless, or if the pos-
sible benefit is extremely important, then a high NNT might be
acceptable. For example, the use of aspirin to prevent a first heart
attack has an NNT of over 1000, but plenty of doctors recommend
it routinely, despite its side effects.5 5 Antithrombotic Trialists Collaboration.

“Aspirin in the primary and secondary
prevention of vascular disease: col-
laborative meta-analysis of individual
participant data from randomised
trials.” Lancet. 2009; 373(9678); 1849-60.

But as you may have heard, modern health care is expensive. It
already strains the budgets of most households and governments.
Paying for one thing usually means not paying for something
else, and knowing the NNT helps us to be clear-eyed about these

http://www.thennt.com
http://www.thennt.com
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opportunity costs.
Moreover, a lot of procedures present at least some probability

Q of unwanted side effects—for example, the risk that a mammo-
gram will lead to a false-positive finding. That means a medical
cost/benefit analysis really has two expected values to contend
with: the expected number of people helped, N × P; and the ex-
pected number harmed, N × Q. In this context, we speak of the
“number needed to harm,” or NNH: the number of people we’d
need to treat in order to harm a single person in some specific way.

For these reasons, a high-NNT medical procedure usually pro-
vokes two questions.

For governments and insurers: Could we produce a greater good
for a greater number of people by redirecting our limited
resources to some other treatment?

For everyone: How bad are the side effects, and what’s the number
needed to harm (NNH)? Imagine a treatment that produces
nasty side effects in every fifth patient (NNH = 5), but only
cures every hundredth (NNT = 100). Depending on how bad
the side effects are compared with the original condition, you
might prefer no treatment at all.

Expected value and mammograms. Indeed, it was exactly this sec-
ond question that spurred the American Cancer Society to recently
revise its guidelines on screening mammograms for women with
no family history of breast cancer. The New York Times devoted a
front-page story to the announcement:6 6 “American Cancer Society, in a

Shift, Recommends Fewer Mam-
mograms.” Denise Grady, New
York Times front page, 20 October
2015. Available at http://www.
nytimes.com/2015/10/21/health/

breast-cancer-screening-guidelines.

html.

The American Cancer Society, which has for years taken the
most aggressive approach to screening, issued new guidelines
on Tuesday, recommending that women with an average risk
of breast cancer start having mammograms at 45 and con-
tinue once a year until 54, then every other year for as long as
they are healthy and likely to live another 10 years. The or-
ganization also said it no longer recommended clinical breast
exams, in which doctors or nurses feel for lumps, for women
of any age who have had no symptoms of abnormality in the
breasts. Previously, the society recommended mammograms
and clinical breast exams every year, starting at 40.

The key changes here were for women under 45 or over 54, for
whom biennial scans were now recommended; for women aged
45-54, annual scans remained the recommendation.7

7 It’s important to point out here (as
the New York Times did, responsibly)
that the revised guidelines applied only
to women with an “average” risk of
breast cancer. Women with a personal
or family history of breast cancer, or
any other major risk factor, were still
encouraged to get annual screenings
from an early age.

http://www.nytimes.com/2015/10/21/health/breast-cancer-screening-guidelines.html
http://www.nytimes.com/2015/10/21/health/breast-cancer-screening-guidelines.html
http://www.nytimes.com/2015/10/21/health/breast-cancer-screening-guidelines.html
http://www.nytimes.com/2015/10/21/health/breast-cancer-screening-guidelines.html
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The Society’s previous recommendation for women with no
family history was to get a mammogram every year starting at
age 40. This approach benefitted some people, and harmed others.
Specifically, a systematic review of many earlier studies estimated
that, under this approach, we’d need to regularly screen about
2,500 women aged 40-49 in order to save one life (NNS ≈ 2500). Of
these 2,500 women, about 175 would end up experiencing a false-
positive biopsy result. This imples an NNH of about 14: for every
14 women screened, someone got hurt.8 8 Myers et. al. “Benefits and Harms of

Breast Cancer Screening: A Systematic
Review.” Journal of the American Medical
Association 2015; 314(15):1615-34.

However, if we were to apply the Society’s new screening rec-
ommendations to these same 2,500 women, we’d still expect to
save that one life, on average. But now we would expect only 120

false positives. That’s 55 women out of every 2,500 who are spared
from needless stress and medical intervention, with no detectable
increase in the risk of someone dying. These expected-value cal-
culations were a big part of the reasoning behind the American
Cancer Society’s new recommendation: that women with no fam-
ily history should get screened every year from 45-54, and every
two years after that.

Expected value and PSA screening. Screening mammograms are
not the only medical procedure that requires careful thinking
about expected value. A common test for prostate cancer, called
the prostate-specific antigen (PSA) test, has been at the center of
a similar controversy for years. Prostate cancer kills over 300,000

men per year worldwide. However, it’s also incredibly common
for a prostate tumor to come late in life and grow slowly. In fact,
autopsy records show that something like 2/3 of all elderly men
die with asymptomatic tumors in their prostates.

Here’s why the PSA test is controversial. The test detects ele-
vated levels of prostate-specific antigen in the blood, which is a
potential indicator of a prostate tumor. If a man’s PSA levels are
high enough, he’s referred for a prostate biopsy to get a tissue
sample. This has some small probability P of detecting a deadly
tumor. But because asymptomatic prostate cancer is so common,
the test also has some other probability Q of leading to unnec-
essarily aggressive courses of treatment for a tumor that never
would have done much harm. Some of the men who undergo
these treatments end up incontinent, impotent, or dead.

Is the life-saving potential of PSA screening for prostate cancer
worth these harms? The U.S. Preventive Services Task Force says
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no: P is tiny and Q is large. Here’s how their report describes PSA
tests:

The reduction in prostate cancer mortality after 10 to 14 years
is, at most, very small, even for men in what seems to be the
optimal age range of 55 to 69 years. There is no apparent
reduction in all-cause mortality. In contrast, the harms asso-
ciated with the diagnosis and treatment of screen-detected
cancer are common, occur early, often persist, and include a
small but real risk for premature death. Many more men in a
screened population will experience the harms of screening
and treatment of screen-detected disease than will experience
the benefit. The inevitability of overdiagnosis and overtreat-
ment of prostate cancer as a result of screening means that
many men will experience the adverse effects of diagnosis
and treatment of a disease that would have remained asymp-
tomatic throughout their lives.

The Task Force concludes simply that “the benefits of PSA-based
screening for prostate cancer do not outweigh the harms.”9 9 Moyer et. al. “Screening for Prostate

Cancer: U.S. Preventive Services Task
Force Recommendation Statement.”
Annals of Internal Medicine 157(2), 2012.Postscript

Now would be a good time to issue an important disclaimer: we
are not qualified to endorse or dispute the American Cancer So-
ciety’s guidelines on mammograms, or the USPSTF’s guidelines
on PSA screening. We’re merely trying to highlight the role of
expected value in their thinking, and to emphasize two broader
lessons to be found in these debates.

First, we appreciate that, if you’re a patient thinking through
your treatment options, what matters most are your own circum-
stances and preferences. While population-level quantities like an
expected value or an NNT can guide your thinking, it’s your own
situation-specific, conditional probabilities that really ought to be
decisive. However, those in the business of setting health policy—
whether for a government, insurance company, or professional
society—simply cannot avoid the principle of expected value. We
ask these people to act like responsible utilitarians on behalf of a
wider population. To do this, they must think about both N and P.

The second lesson is that cause and effect are both complicated
and probabilistic. Most interventions produce the intended effect
in any individual case only with some probability P. For many
policies, P is very small, and the risk Q of unwanted side effects
may be much higher. We should weigh the policy’s costs and
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benefits in light of the expected values for both the good and the
bad outcomes.

But it’s all too easy to let ourselves fall into some counterfactual
dream state, especially if can’t shake the impression left by that
one awesome example where the policy really did work. “If things
turned out like that every time,” we think to ourselves, “imagine
how many lives/dollars/hours/puppies we could save.” But that’s
a big “if.” Controversial medical tests are great examples of this
phenomenon. If you read up on the debates surrounding mammo-
grams or PSA screening, you’ll notice a striking rhetorical pattern.
The medical societies and task forces recommending fewer screens
always cite expected values based on peer-reviewed medical re-
search. The doctors and patients who cry out in opposition often
cite anecdotes or “clinical experience.”

There are many other examples outside medicine. For example,
in the 1990s, California passed its infamous “three-strikes” law,
where someone with a third felony conviction automatically re-
ceived at least a 25-year prison sentence. These once-fashionable
laws have now fallen out of favor, but it’s easy to understand how
they could have been passed in the first place. All it takes is for
one judge to be a bit too lenient, and for a thrice-convicted felon
to go on a headline-grabbing rampage after getting out of prison,
for that single canonical example to become frozen in the public’s
mind. From there, the “obvious” policy solution is hardly a big
leap: three-time felons must spend the rest of their lives in jail.

As it happens, while California’s three-strikes laws may have
prevented some crimes, many scholars have concluded that it
was largely ineffective.10 One thing the law did do, however, was 10 Males et. al. “Striking Out: The

Failure of California’s ‘Three Strikes
and You’re Out’ Law.” Stanford Law
and Policy Review, Fall 1999.

create a sharp incentive for criminals to avoid that third arrest. As
a result, the law may have caused more felonies than it prevented,
by increasing the chance Q that a suspect with two strikes will
assault or murder a police officer who’s about to arrest them.11 It 11 Johnson and Saint-Germain. “Officer

Down: Implications of Three Strikes for
Public Safety.” Criminal Justice Policy
Review, 16(4), 2005.

also cost taxpayers a huge amount of money to prosecute, secure,
feed, and clothe all those dangerous felons whose third strike
consisted of an illegal left turn with three dimebags of marijuana
in the passenger seat.

So if you ever get to make any kind of policy, keep expected
value at the front of your thoughts, and mind your P and Q.
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Probability: a language for uncertainty

All of these examples illustrate the concept of a random variable,
which is a generic term for any uncertain outcome. For example:

• the number of trees that fall over tonight in a particular patch
of New Guinean forest.

• the number of women aged 50-70, out of a group of 200, who
will get breast cancer.

• how many users will click on a particular Google ad in the
next hour.

These random variables all fall within the NP rule, where the
expected value is found by mutiplying the risk times the exposure.

But here’s where we run up against the limitations of thinking
about randomness purely in terms of a simple risk/exposure
calculation. One problem is a lack of generality. For example, it’s
not at all clear how we could use this approach to calculate an
expected value for these uncertain outcomes:

• the rate of U.S. unemployment in 18 months.

• the value of your retirement portfolio in 30 years.

• your extra lifetime earnings from going to graduate school.

What does a risk/exposure calculation even look like here? And
what about these uncertainties?

• the winner of next year’s Tour de France.

• whether a defendant is guilty or innocent.

• whether you’ll like the next person you’re matched up with
through a dating app.

Here the possible outcomes aren’t even numbers.
A second, even bigger problem is that an expected value con-

veys nothing about uncertainty. We may expect that 11 people in
Green Bay, Wisconsin (pop. 100,000) will die this year in a car acci-
dent. But it could be 5, or 20. It’s a random variable; no one knows
for sure.

To really understand risk deeply, we need a better language
for helping us to communicate clearly about uncertainty. That
language is probability.
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Probability

Probability is a rich language for communicating about uncer-
tainty. Up to now we’ve spoken in fairly loose terms about this
concept. And while most of us have an intuitive notion of what it
means, it pays to be a bit more specific.

A probability is just a number that measures how likely it is
that some event, like rain, will occur. If A is an event, P(A) is its
probability: P(coin lands heads) = 0.5, P(rainy day in Ireland) =
0.85, P(cold day in Hell) = 0.0000001, and so forth.

Some probabilities are derived from data, like the knowledge
that a coin comes up heads about 50% of the time in the long
run, or that 11 people out of 100,000 die in a car accident. But it’s
also perfectly normal for a probability to reflect your subjective
assessment or belief about something. Here, you should imagine
a stock-market investor who has to decide whether to buy a stock
or sell it. The performance of a stock over the coming months and
years involves a bunch of one-off events that have never happened
before, and will never be repeated. But that’s OK. We can still
talk about a probability like P(Apple stock goes up next month).
We just have to recognize that this probability reflects someone’s
subjective judgment, rather than a long-run frequency from some
hypothetical coin-flipping experiment.

Probability and betting markets. If you don’t have any data, a great
way to estimate the probability of some event is to get people to
make bets on it. Let’s take the example of the 2014 mens’ final at
Wimbledon, between Novak Djokovic and Roger Federer. This was
one of the most anticipated tennis matches in years. Djokovic, at
27 years old, was the top-ranked player in the world and at the
pinnacle of the sport. And Federer was—well, Federer! Even at 32

years old and a bit past his prime, he was ranked #3 in the world,
and had been in vintage form leading up to the final.

How could you synthesize all this information to estimate a
probability like P(Federer wins)? Well, if you walked into any
betting shop in Britain just before the match started, you would
been quoted odds of 20/13 on a Federer victory.12 To interpret 12 There are approximately 9,000 betting

shops in the United Kingdom. In fact,
it is estimated that approximately 4%
of all retail storefronts in England are
betting shops.

odds in sports betting, think “losses over wins.” That is, if Federer
and Djokovic played 33 matches, Federer would be expected to
win 13 of them and lose 20, meaning that

P(Federer wins match) =
13

13 + 20
≈ 0.4 .

https://en.wikipedia.org/wiki/Betting_shop
https://en.wikipedia.org/wiki/Betting_shop
http://abb.uk.com/how-many-betting-shops-are-there-are-their-numbers-growing/
http://abb.uk.com/how-many-betting-shops-are-there-are-their-numbers-growing/
http://abb.uk.com/how-many-betting-shops-are-there-are-their-numbers-growing/
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The markets had synthesized all the available information for you,
and concluded that the pre-match probability of a Federer victory
was just shy of 40%. (Djokovic ended up winning in five sets.)

Conditional probability

Another very important concept is that of a conditional probability.
A conditional probability is the chance that some event A happens,
given that another event B happens. We write this as P(A | B) for
short, where the bar ( | ) means “given” or “conditional upon.”

We’re all accustomed to thinking about conditional probabilities
in our everyday lives, even if we don’t do so quantitatively. For
example:

• P(rainy afternoon | cloudy morning),

• P(rough morning | out late last night),

• P(rough morning | out late last night, drank extra water),

and so forth. As the last example illustrates, it’s perfectly valid to
condition on more than one event.

A key fact about conditional probabilities is that they are not
symmetric: P(A | B) 6= P(B | A). In fact, these two numbers are
sometimes very different. For example, just about everybody who
plays professional basketball in the NBA practices very hard:

P(practices hard | plays in NBA) ≈ 1 .

But sadly, most people who practice hard with a dream of playing
in the NBA will fall short:

P(plays in NBA | practices hard) ≈ 0 .

We’ll see a few examples later where people get this wrong, and
act as if P(A | B) and P(B | A) are the same. Don’t do this.

Conditional probabilities are used to make statements about
uncertain events in a way that reflects our assumptions and our
partial knowledge of a situation. They satisfy all the same rules
as ordinary probabilities, and we can compare them as such. For
example, we all know that

P(rainy afternoon | clouds) > P(rainy afternoon | sun) ,

P(shark attack | swimming in ocean) > P(shark attack | watching TV) ,

P(heart disease | swimmer) < P(heart disease | couch potato) ,

and so forth, even if we don’t know the exact numbers.
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The rules of probability

Probability is an immensely useful language, and there are only a
few basic rules. These are sometimes called Kolmogorov’s rules,
after a Russian mathematician. (Like chess and gymnastics, proba-
bility is a very Russian pursuit.)

(1) All probabilities are numbers between 0 and 1, with 0 meaning
impossible and 1 meaning certain.

(2) Either an event occurs (A), or it doesn’t (not A):

P(not A) = 1− P(A) .

(3) If two events are mutually exclusive (i.e. they cannot both
occur), then

P(A or B) = P(A) + P(B) .

These are usually called Kolmogorov’s rules. There’s also a
fourth, slightly more advanced rule for conditional probabilities:

(4) Let P(A, B) be the joint probability that both A and B happen.
Then the conditional probability P(A | B) is:

P(A | B) =
P(A, B)

P(B)
. (10.1)

An equivalent way of expressing Rule 4 is to multiply both sides
of the equation by P(B), to yield

P(A, B) = P(A | B) · P(B) .

We can use these two versions interchangeably.
To illustrate these rules, we’ll turn to Figure 10.1, which is is the

brainchild of David Spiegelhalter and Jenny Gage of the Univer-
sity of Cambridge. These researchers asked themselves the ques-
tion: how can we present the evidence on the benefits and risks of
screening in a way that doesn’t make an explicit recommendation,
but that helps people reach their own conclusion? The result of
their efforts was a series of probability trees like Figure 10.1, each
one depicting the likely experiences of women with and without
screening.

This particular figure tracks what we’d expect to happen to two
hypothetical cohorts of 200 women, aged 50 to 70. In the cohort
of 200 on the left, all women are screened; while in the cohort of
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EXPECTED FREQUENCY TREES 
In the previous example, the denominator of 400 was deliberately chosen so that the crucial 

difference comprised a single person. A similar exercise was conducted for the recent revision of 
the advice leaflets for breast cancer screening in the UK. I was on the panel that worked on this 
controversial topic, using evidence from a review of an independent panel (Cancer Research UK, 
2012), and with the approach that the leaflets would present the potential benefits and harms of 
screening, but would not make an explicit recommendation. 

We drew up the ‘expected frequency tree’ shown in Figure 1, comparing the expected 
experience of 200 women with and without screening. A website (Breakthrough Breast Cancer UK, 
2014) that incorporated a similar infographic recently won a 2014 UK Association of Medical 
Research Charities Science Communication Award. 

 

 
 

Figure 1: Expectations for 200 women attending or not attending breast screening every 3 years 
between the ages of 50 and 70. 

 
OUR ‘MANIFESTO’ FOR TEACHING PROBABILITY 

With Dr Jenny Gage of the Millennium Mathematics Project in Cambridge, we have 
developed a ‘manifesto’ for teaching probability that exploits the ideas of narratives, multiple 
representations, natural frequencies, expectation trees and so on. This can all be viewed on the 
Nrich website (NRICH, 2014). 

Put simply, the stages are: 
 

• Start with a problem (necessarily simplified to some extent) 
• Model physically (using simple equipment, such as a die with different coloured faces or small 

coloured cubes) 
• Do experiments (in groups, recording outcomes) 
• Pool empirical data to represent multiple ‘narratives’ as  

• 2 x 2 tables 
• Frequency tree 
• Venn diagram 

ICOTS9 (2014) Plenary Paper Spiegelhalter

- 3 -

Figure 10.1: Two hypothetical cohorts
of 200 women, ages 50-70. The 200

women on the left all go in for mammo-
grams; the 200 on the right do not. The
branches of the tree show how many
women we would expect to experience
various different outcomes. Figure
from: “What can education learn from
real-world communication of risk and
uncertainty?” David Spiegelhalter and
Jenny Gage, University of Cambridge.
Proceedings of the Ninth International
Conference on Teaching Statistics (ICOTS9,
July, 2014). We’re not the only fans of
the picture: it won an award for ex-
cellence in scientific communication
in 2014 from the UK Association of
Medical Research Charities.

200 on the right, none are screened. The expected results for each
cohort are slightly different: on the right, we expect 1 fewer death,
and 3 extra unnecessary screenings, versus the left.

Just about every major concept in probability is represented in
this picture.

Expected value. In a group of 200 women, how many would we
expect to get breast cancer? Our best guess, or expected value, is
about 15, regardless of whether they get screened or not.

Probability. How likely is breast cancer for a typical woman?
Fifteen cases of cancer in a cohort of 200 women means that an
average woman aged 50-70 has a 7.5% chance of getting breast
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cancer (15/200 = 0.075). This is like the NP rule in reverse: if E is
the expected value (here 15), then the probability is P = E/N.

Joint probability. Suppose that a typical woman does not go for
a screening mammogram. How likely is she to get breast cancer
and to die from it? In the cohort of 200 unscreened women on the
right, 4 are expected to get breast cancer and die from it. Thus the
risk for a typical woman is about 4/200 = 0.02, or 2%.

Conditional probability. Suppose that a woman decides to forego
screening. If she then goes on to develop breast cancer, how likely
is she to die from that cancer? In the unscreened cohort, 15 women
are expected to get breast cancer. Of these 15 women, 4 are ex-
pected to die from their cancer. Thus for an unscreened 50-70 year-
old woman, the risk of dying from breast cancer, given that she
develops breast cancer in the first place, is about 4/15, or about
27%. (Among screened women, this figure is 3/15, or 20%.)

Let’s explicitly calculate this using the rule conditional probabil-
ity (Equation 10.1) instead. The rule says

P(survives | gets cancer) =
P(gets cancer and survives)

P(gets cancer)
.

We’ll take this equation piece by piece.

• Out of 200 women, we expect that 15 will develop cancer.
This is the denominator in our equation:

P(gets cancer) =
15

200
.

• Out of 200 women, we expect that 11 will develop cancer and
survive. This is the numerator in our equation:

P(gets cancer and survives) =
11

200
.

• Therefore, using the rule for conditional probability,

P(survives | cancer) =
11/200
15/200

= 11/15 .
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Conditional probability

In probability, as with many things in life, the real skill is in learn-
ing to ask the right question in the first place. As we’ll discover,
“asking the right question” usually means focusing on the right
conditional probability.

Conditional probability: the art of asking the right question

During World War II, the size of the Allied air campaign over
Europe was truly staggering. Every morning, huge squadrons
of B-17 Flying Fortress bombers, each with a crew of 10 men,
would take off from their air bases in the south of England, to
make their way across the Channel and onwards to their targets in
Germany. By 1943, they were dropping nearly 1 million pounds of
bombs per week. At its peak strength, in 1944, the U.S. Army Air
Forces (AAF) had 80,000 aircraft and 2.6 million people—4% of the
U.S. male population—in service.

As the air campaign escalated, so too did the losses. In 1942,
the AAF lost 1,727 planes; in 1943, 6,619; and in 1944, 20,394. And
the bad days were very bad. In a single mission over Germany
in August of 1943, 376 B-17 bombers were dispatched from 16

different air bases in the south of England, in a joint bombing raid
on factories in Schweinfurt and Regensburg. Only 316 planes came
back—a daily loss rate of 16%. Some units were devastated; the
381st Bomb Group, flying out of RAF Ridgewell, lost 9 of its 20

bombers that day.1 1 Numbers taken from Statistical Ab-
stract of the United States, U.S. Census
Bureau, (1944, 1947, 1950); and the
Army Air Forces Statistical Digest
(World War II), available at archive.org.

Like Yossarian in Catch-22, World War II airmen were painfully
aware that each combat mission was a role of the dice. What’s
more, they had to complete 25 missions to be sent home. With
such poor chances of returning from a single mission, they could
be forgiven for thinking that they’d been sent to England to die.

But in the face of these bleak odds, the crews of the B-17s had at

https://archive.org/details/ArmyAirForcesStatisticalDigestWorldWarII


218 data science

least three major defenses.

1. Their own tail and turret gunners, to defend the plane below
and from the rear.

2. Their fighter escorts: the squadrons of P-47 Thunderbolts,
RAF Spitfires, and P-51 Mustangs sent along to protect the
bombers from the Luftwaffe.

3. A Hungarian-American statistician named Abraham Wald.

Figure 11.1: Abraham Wald.

Abraham Wald never shot down a Messerschmitt or even saw
the inside of a combat aircraft. Nonetheless, he made an out-
sized contribution to the Allied war effort, and no doubt saved
the lives of many American bomber crews, using an equally potent
weapon: conditional probability.

Where should the military reinforce its planes?

Abraham Wald was born in 1902 in Austria-Hungary, where he
went on to earn a Ph.D. in mathematics from the University of
Vienna. Wald was Jewish, and when the Nazis invaded in 1938,
he—like so many brilliant European mathematicians and scientists
of that era—fled to America.

Wald soon went to work as part of the Applied Mathematics
Panel, which had been convened by order of President Roosevelt
to function as something of a mathematical tech-support hotline
for the U.S. military. It was during these years of service to his
adopted country that Wald prevented the military brass from
making a major blunder, thereby saving many lives.

Here’s the problem Wald analyzed.2 While some airplanes came 2 Distilled from: Mangel and
Samaniego, “Abraham Wald’s work
on aircraft survivability.” Journal of the
American Statistical Association 79 (386):
259-67.

back from bombing missions in Germany unscathed, many others
had visibly taken hits from enemy fire. In fact, someone examining
the planes just after they landed would likely have found bullet
holes and flak damage everywhere: on the fuselage, across the
wings, on the engine block, and sometimes even near the cockpit.

At some point, a clever person, whose identity is lost to his-
tory, had the idea of analyzing the distribution of these hits over
the surface of the returning planes. The thinking was that, if you
could find patterns in where the B-17s were taking enemy fire,
you could figure out where to reinforce them with extra armor, to
improve survivability. (You couldn’t reinforce them everywhere, or
they would be too heavy to fly.)
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Researchers at the Center for Naval Analyses took this idea and
ran with it. They examined data on hundreds of damaged air-
planes that had returned from bombing runs in Germany. They
found a very striking pattern3 in where the planes had taken en- 3 Alas, the actual data used in the

original analyses cannot be located. But
Wald wrote a report for the Navy on
his methods, and we have attempted
to simulate a data set that hews as
closely as possible to the assumptions
and (patchy) information that he
provides in that report (“A Method of
Estimating Plane Vulnerability Based
on Damage of Survivors”, from 1943).
These and subsequent numbers are for
hypothetical cohort of 800 airplanes, all
taking damage.

emy fire. It looked something like this:

Location Number of planes

Engine 53

Cockpit area 65

Fuel system 96

Wings, fuselage, etc. 434

If you turn those frequencies into probabilities, so that the num-
bers sum to 1, you get the following.

Location Probability of hit

Engine 0.08

Cockpit area 0.10

Fuel system 0.15

Wings, fuselage, etc. 0.67

Thus of all the planes that took hits and made it back to base,
67% of them had taken those hits on the wings and fuselage.

P(hit on wings or fuselage | returns safely) ≈ 0.67 .

But that’s the right answer to the wrong question. Wald recog-
nized that this number suffered from a crucial flaw: it only included
data on the survivors. The planes that had been shot down were
missing from the analysis—and only the pattern of bullet holes
on those missing planes could definitively tell the story of a B-17’s
vulnerabilities.

Instead, he recognized that it was essential to calculate the
inverse probability, namely

P(returns safely | hit on wings or fuselage) = ?

This might be a very different number. Remember: P(practices hard |
plays in NBA) ≈ 1, while P(plays in NBA | practices hard) ≈ 0.
Conditional probabilities aren’t symmetric.

Of course, Wald had no data on the planes that had been shot
down. Therefore, to actually calculate the probability P(returns safely |
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hit on wings or fuselage) required that Wald approach the data set
like a forensic scientist. Essentially, he had to reconstruct the typi-
cal encounter of a B-17 with an enemy fighter, using only the mute
testimony of the bullet holes on the planes that had made it back,
coupled with some educated guessing. So Wald went to work. He
analyzed the likely attack angle of enemy fighters. He chatted with
engineers. He studied the properties of a shrapnel cloud from a
flak gun. He suggested to the army that they fire thousands of
dummy bullets at a plane sitting on the tarmac. And yes, he did a
lot of math.4 4 We don’t go into detail on Wald’s

methods here, which were very com-
plex. But later statisticians have taken
a second look at those methods, with
the hindsight provided by subsequent
advances in the field. They have con-
cluded, very simply: “Wald’s treatment
of these problems was definitive.”
(Mangel and Samaniego, ibid.)

Remarkably, when all was said and done, Wald was able to
reconstruct an estimate for the joint probabilities for the two distinct
types of events that each airplane experienced: where it took a hit,
and whether it returned home safely. In other words, although
Wald couldn’t bring the missing planes back into the air, he could
bring their statistical signature back into the data set. For our
hypothetical cohort of 800 bombers that took damage, Wald’s best
guess would have looked something like this:

Returned Shot down

Engine 53 57

Cockpit area 65 46

Fuel system 96 16

Wings, fuselage, etc. 434 33

Table 11.1: An example of how Abra-
ham Wald could have reconstructed
the joint frequency distribution over hit
type and outcome for our hypothetical
cohort of 800 planes taking enemy fire.

For example, Wald’s method would have estimated that 53 of the
800 planes, or 6.6% overall, experienced the joint event (hit type
= engine, outcome = returned home safely). You’ll notice that the
numbers in the left column correspond exactly to the table given
earlier: the pattern of hits to airplanes that made it back home.
What’s new is the right column: Wald’s forensic reconstruction of
the pattern of hits to planes that had been shot down.

This estimate for the joint frequencies for two random out-
comes, hit type and outcome, now allowed Wald to answer the
right question. Of the 467 planes that had taken hits to wings and
fuselage, 434 of them had returned home, while 33 of them had
not. Thus Wald estimated that the conditional probability of sur-
vival, given a hit to the wings and fuselage, was

P(returns safely | hit on wings or fuselage) =
434

434 + 33
≈ 0.93 .
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It turns out that B-17s were pretty robust to taking hits on the
wings or fuselage.

On the other hand, of the 110 planes that had taken damage to
the engine, only 53 only returned safely. Therefore

P(returns safely | hit on engine) =
53

53 + 57
≈ 0.48 .

Similarly,

P(returns safely | hit on cockpit area) =
65

65 + 46
≈ 0.59 .

The bombers were much more likely to get shot down if they took
a hit to the engine or cockpit area.

Postscript. In the story of Abraham Wald and the missing B-17s,
the path of counterintuitive facts eventually turns a full 360 de-
grees. Imagine asking any random person off the street: “Where
should we put extra armor on airplanes to help them survive en-
emy fire?” We haven’t done this survey, but we strongly suspect
that most thoughtful people would answer: where the pilot and
the engines are! But the data initially seem to suggest otherwise.
This implies that we should turn 180 degrees away from our intu-
ition: if the planes are taking damage on the wings and the fuse-
lage, then let’s put the armor there instead. But that’s wrong, and
the moral of the story is that data alone isn’t enough. You have to
know enough about conditional probability to be able to pose the
right question in the first place.

How Netflix knows your taste in movies so well

The same math that Abraham Wald used to analyze bullet holes
on B-17s also underpins the modern digital economy of films,
television, music, and social media. To give one example: Netflix,
Hulu, and other video-streaming services all use this same math
to examine what shows their users are watching, and apply the
results of their number-crunching to recommend new shows.

To see how this works, suppose that you’re designing the
movie-recommendation algorithm for Netflix, and you have ac-
cess to the entire Netflix database, showing which customers have
liked which films—for example, by assigning a film a five-star
rating. Your goal is to leverage this vast data resource to make au-
tomated, personalized movie recommendations. The better these
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recommendations are, the more likely your customers are to keep
their accounts on auto-pay.

You decide to start with an easy case: assessing how probable it
is that a user will like the film Saving Private Ryan (event A), given
that the same user has liked the HBO series Band of Brothers (event
B). This is almost certainly a good bet: both are epic dramas about
the Normandy invasion and its aftermath. Therefore, you might
think: job done! Recommend away.

For this particular pair of shows, fine. But keep in mind that
you want to be able to do this kind of thing automatically. It
would not be cost effective to put a human in the loop here, la-
boriously tagging all possible pairs of movies for similar themes
or content—to say nothing of all of the other stuff that might make
two different films appeal to the same person.

As with Abraham Wald and the missing bombers, it’s all about
asking the right question. The key insight here is to frame the
problem in terms of conditional probability. Suppose that, for
some pair of films A and B, the probability P(random user likes A |
random user likes B) is high—say, 80%. Now we learn that Linda
liked film B, but hasn’t yet seen film A. Wouldn’t A be a good
recommendation? Based on her liking of A, there’s an 80% chance
she’ll like it.

But how can we learn P(likes A | likes B)? This is where your
database, coupled with the rule for conditional probability, comes
in handy. Suppose that there are 5 million people in your database
who have seen both Saving Private Ryan and Band of Brothers, and
that the ratings data on these 5 million users looks like this:

Liked Band of
Brothers

Didn’t like

Liked Saving Private Ryan 2.8 million 0.3 million
Didn’t like 0.7 million 1.2 million

Once again, we have information on two random outcomes: A =
whether a user liked Saving Private Ryan, and B = whether the user
liked Band of Brothers. From this information, we can easily work
out the conditional probability that we need. Of the 5 million users
in the database who have watched both programs, 2.8 + 0.7 = 3.5
million of them liked Band of Brothers. Of these 3.5 million people,
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2.8 million (or 80%) also liked Saving Private Ryan. Therefore,

P(liked Saving Private Ryan | liked Band of Brothers) =
2.8 million
3.5 million

= 0.8 .

Note that you could also jump straight to the math, and use the
rule for conditional probabilities (Equation 10.1, on page 214), like
this:

P(A | B) =
P(A, B)

P(B)
=

2.8/5
(2.8 + 0.7)/5

= 0.8 .

You’d get the same answer in the end.
The key thing that makes this approach work so well is that

it’s automatic. Computers aren’t very good (yet) at automatically
scanning films for thematic content. But they’re brilliant at cal-
culating conditional probabilities from a vast database of users’
movie-watching histories.

The same trick works for books, too. Suppose you examine the
online book-purchase histories of two friends Albert and Pablo,
and discovered the following items.

Albert: (1) Proof and Consequences. (2) A Body in Motion: New-
ton’s Guide to Productivity. (3) Obscure Theorems of the 14th
Century.

Pablo: (1) Your Face is Offside: Dora Maar at the Cubist Soccer
Match. (2) A Short History of Non-representational Art. (3)
Achtung, Maybe? Dali, Danger, and the Surreal.

What sorts of books are you likely to recommend to these
friends for their birthdays? Amazon learned to use conditional
probability to automate this process long ago, to the chagrin of
independent bookstores everywhere. Similar math also underpins
recommender systems for music (Spotify), ads (Google), and even
friends (Facebook).

The digital economy truly is ruled by conditional probability.

The math of conditional probability

To understand the basic math behind joint, conditional, and
marginal probabilities, we’ll return to the story of Abraham Wald
and the B-17s.
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Joint probabilities

We start by turning Table 11.1, which contains counts of differ-
ent joint event types for a cohort of 800 airplanes, into a table of
probabilities:

Returned Shot down

Engine 0.066 0.071

Cockpit area 0.081 0.058

Fuel system 0.120 0.020

Wings, fuselage, etc. 0.542 0.042

This table gives summarizes the probabilities for two ran-
dom outcomes: X = hit type, along the rows; and Y = outcome,
along the columns. The entries in a table like this are called
joint probabilities: P(X = x, Y = y). For example, 2% of all
planes both took a hit in the fuel system and got shot down:
P(X = fuel system, Y = shot down) = 0.02. Up to round-off
error, these 8 probabilities all sum to 1.

Marginal probabilities

Next, we add an additional row and column of marginal (or over-
all) probabilities of the different event types and outcomes, like
in the table below. These are called the marginal probabilities be-
cause we calculate them by summing across the relevant margin
(i.e. row or column) of the table.

Returned Shot down Marginal

Engine 0.066 0.071 0.137

Cockpit area 0.081 0.058 0.139

Fuel system 0.120 0.020 0.140

Wings, fuselage, etc. 0.542 0.042 0.584

Marginal 0.809 0.191 1

The marginal probabilities we’ve calculated just reflect the fact
that the probability of some event (like returning safely) is the sum
of the probabilities for all the distinct ways that event can happen.
For example, an airplane that takes a hit to the engine can do so in
two ways: it can take the hit and return, or it can take the hit and
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not return. Therefore,

P(hit to engine) = P(returned, hit to engine) + P(shot down, hit to engine)

= 0.066 + 0.071 = 0.137 .

The rest of the marginal probabilities are calculated similarly, e.g.

P(returned) = 0.066 + 0.081 + 0.120 + 0.542

= 0.809 .

Conditional probabilities

Finally, we are ready to understand the rule for conditional prob-
abilities. You’ll recall that this was the fourth of the basic rules of
probability quoted earlier. It goes like this:

P(A | B) =
P(A, B)

P(B)
.

Remember how we used Table 11.1 to calculate P(returns |
hit to engine)? We looked at the total number of planes that had
taken a hit to the engine. We then asked: of these planes, how
many also returned home safely? As an equation, this gives us

P(returns | engine hit) =
Number taking engine hit and returned safely

Number taking engine hit

=
53
110
≈ 0.48 .

You’ll notice we get the exact same answer if we use the rule
for conditional probabilities: P(A | B) = P(A, B)/P(B). These
probabilities are estimated using the relevant fractions from the
data set:

P(returns | engine hit) =
Fraction taking engine hit and returning safely

Fraction taking engine hit

=
53/800
110/800

=
0.066
0.137

≈ 0.48 .

While the rule for conditional probabilities may look a bit intimi-
dating, it just codifies exactly the same intuition we used to calcu-
late P(returns | engine hit) from the table of counts.
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The rule of total probability

Consider the following data on obstetricians delivering babies
at a hospital in England. The table below shows the complication
rates for both junior and senior doctors on the delivery ward,
grouped by delivery type:

Easier deliveries Harder deliveries Overall

Senior doctors 0.052 (213) 0.127 (102) 0.076 (315)
Junior doctors 0.067 (3169) 0.155 (206) 0.072 (3375)

The numbers in parentheses are the total deliveries of each type.
This table exhibits an aggregation paradox.5 No matter what 5 Also called Simpson’s paradox.

kind of delivery you have, whether easy or hard, you’d prefer to
have a senior doctor. They have lower complication rates than
junior doctors in both cases. Yet counterintuitively, the senior doc-
tors have a higher overall complication rate: 7.6% versus 7.2%.
Why? Because of a lurking variable: most of the deliveries per-
formed by junior doctors are easier cases, where complication rates
are lower overall. The senior doctors, meanwhile, work a much
higher fraction of the harder cases. Their overall complication rate
reflects this burden.

Here’s another example. Jacoby Ellsbury and Mike Lowell were
two baseball players for the Boston Red Sox during the 2007 and
2008 seasons. The table below shows their batting averages for
those two seasons, with their number of at-bats in parentheses.
We see that Ellsbury had a higher batting average when he was a
rookie, in 2007; a higher batting average a year later, in 2008; but a
lower batting average overal!

2007 2008 Overall

Lowell .324 (589) .274 (419) .304 (1008)
Ellsbury .353 (116) .280 (554) .293 (670)

Again we have an aggregation paradox, and again it is resolved
by pointing to a lurking variable: in 2007, when both players had
higher averages, Ellsbury had many fewer at-bats than Lowell.

It turns out the math of these aggregation paradoxes can be
understood a lot more deeply in terms of something called the rule
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of total probability, or the mixture rule. This rule sounds impressive,
but is actually quite simple. It says: the probability of any event
is the sum of the probabilities for all the different ways in which
the event can happen. In that sense, the law of total probability
is really just Kolmogorov’s third rule in disguise. The distinct
ways in which some event A can happen are mutually exclusive.
Therefore we just sum all their probabilities together to get P(A).

Let’s return to the example on obstetric complication rates on
junior doctors at a hospital in England. In the table, there are
two ways of having a complication: with an easy case, or with a
hard case. Therefore, the total probability is the sum of two joint
probabilities:

P(complication) = P(easy and complication)+ P(hard and complication) .

If we now apply the rule for conditional probabilities (Equation
10.1) to each of the two joint probabilities on the right-hand side of
this equation, we have this:

P(complication) = P(easy) · P(complication | easy)+ P(hard) · P(complication | hard)

Thus the rule of total probability says that overall probability is a
weighted average—a mixture—of the two conditional probabilities.
For senior doctors we get

P(complication) =
213
315
· 0.052 +

102
315
· 0.127 = 0.076 .

And for junior doctors, we get

P(complication) =
3169
3375

· 0.067 +
206
3375

· 0.155 = 0.072 .

This is a lower overall probabiity of a complication, despite the
fact the junior doctors have higher conditional probabilities of a
complication in all scenarios.

So which probabilities should we report: the conditional prob-
abilities, or the overall (total) probabilities? There’s no one right
answer; it depends on your conditioning variable, and your goals.
In the obstetric data, the overall complication rates are clearly mis-
leading. The distinction between easier and harder cases matters
a lot. Senior doctors work harder cases, on average, and therefore
have higher overall complication rates. But what matters to the
patient, and to anyone who assesses the doctors’ performance, are
the conditional rates. You have to account for the lurking variable.
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The baseball data is different. Here the conditional probabili-
ties for 2007 and 2008 are probably misleading. The distinction
between 2007 and 2008 is nothing more than an arbitrary cutoff
on the calendar. It’s barely relevant from the standpoint of assess-
ing baseball skill, and it needlessly splits one big sample of each
player’s history into two smaller, more variable samples. So in this
case we’d probably go with the overall averages if we wanted to
say which player was performing better.

A formal statement of the rule of total probability. Suppose that
events B1, B2, . . . , BN constitute an exhaustive partition of all
possibilities in some situation. That is, the events themselves are
mutually exclusive, but one of them must happen. This can be
expressed mathematically as

P(Bi, Bj) = 0 for any i 6= j, and
N

∑
i=1

P(Bi) = 1 . (11.1)

Now consider any event A. If Equation 11.1 holds, then

P(A) =
N

∑
i=1

P(A, Bi) =
N

∑
i=1

P(Bi) · P(A | Bi) . (11.2)

Equation 11.2 is what is usually called the rule of total probability.

Surveys and the rule of total probability

One of the least surprising headlines of 2010 must surely have
been the following, from the ABC News website:

Teens not always honest about drug use.6 6 Kim Carollo, ABC News, Oct. 25, 2010.
Link here.

In other news, dog bites man.
To be fair, the story itself was a bit more surprising than the

headline. Yes, it’s hardly news that teenagers would lie to their
parents, teachers, coaches, and priests about drug use. But the
ABC News story was actually reporting on a study showing that
teenagers also lie to researchers who conduct anonymous sur-
veys about drug use—even when those teenagers know that their
answers will be verified using a drug test.

Here’s the gist of the study. Virginia Delaney-Black and her col-
leagues at Wayne State University, in Detroit, gave an anonymous
survey to 432 teenagers, asking whether they had used various

http://abcnews.go.com/Health/MindMoodNews/teens-truthful-drug-study/story?id=11947228
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illegal drugs.7 Of these 432 teens, 211 of them also agreed to give a 7 V. Delaney–Black et. al. “Just Say ‘I
Don’t’: Lack of Concordance Between
Teen Report and Biological Measures of
Drug Use.” Pediatrics 165:5, pp. 887-93

(2010).

hair sample. Therefore, for these 211 respondents, the researchers
could compare people’s answers with an actual drug test.

The two sets of results were strikingly different. For example,
of the 211 teens who provided a hair sample, only a tiny fraction
of them (0.7%) admitted to having used cocaine. However, when
the hair samples were analyzed in the lab, 69 of them (33.7%) came
back positive for cocaine use.

And it wasn’t just the teens who lied. The survey researchers
also asked the parents of the teens whether they themselves had
used cocaine. Only 6.1% said yes, but 28.3% of the hair samples
came back positive.

Let’s emphasize again that we’re talking about a group of peo-
ple who were guaranteed anonymity, who wouldn’t be arrested
or fired for saying yes, and who willingly agreed to provide a
hair sample that they knew could be used to verify their survey
answers. Yet a big fraction lied about their drug use anyway.

Surveys and lies

Drug abuse—whether it’s crack cocaine in Detroit, or bathtub
speed in rural Nebraska—is a huge social problem. It fills our
jails, drains public finances, and perpetuates a trans-generational
cycle of poverty. Getting good data on this problem is important.
As it stands, pediatricians, schools, and governments all rely on
self-reported measures of drug use to guide their thinking on this
issue. Yet distressingly, the proportion of self-reported cocaine use
in the Detroit study, 0.7%, was broadly similar to the findings
in large, highly regarded surveys—for example, the federally
funded National Survey on Drug Use and Health. The work of
Dr. Delaney-Black and her colleagues would seem to imply that all
of these self-reported figures might be way off the mark.

Moreover, theirs hasn’t been the only study to uncover evidence
that surveys cannot necessarily be taken at face value. Here are
some other things that, according to research on surveys, people lie
about in surveys.

• Churchgoers overstate the amount of money they give when
the hat gets passed around during the service.

• Gang members embellish the number of violent encounters
they have been in.

https://www.icpsr.umich.edu/icpsrweb/ICPSR/series/64


230 data science

• Men exaggerate their salary, among other things.

• Ravers will “confess” to having gotten high on drugs that do
not actually exist.

How to ask an embarrassing question: probability as an invisibility cloak

But there’s actually some good news to be found here. It’s this:
when people lie in surveys, they tend to do so for predictable
reasons (to impress someone or avoid embarrassment), and in pre-
dictable ways (higher salary, fewer warts). This opens the door for
survey designers to use a bit of probability, and a bit of psychol-
ogy, to get at the truth—even in a world of liars.

Let’s go back to the example of drug-use surveys so that we
can see this idea play out. Suppose that you want to learn about
the prevalence of drug use among college students. You decide to
conduct a survey at a large state university to find out how many
of the students there have smoked marijuana in the last year. But
as you now appreciate, if you ask people direct questions about
drugs, you can’t always trust their answers.

Here’s a cute trick for alleviating this problem, in a way that
uses probability theory to mitigate someone’s psychological in-
centive to lie. Suppose that, instead of asking people point-blank
about marijuana, you give them these instructions.

1. Flip a coin. Look at the result, but keep it private.

2. If the coin comes up heads, please use the space provided
to write an answer to question Q1: “Is the last digit of your
Social Security number odd?”

3. If the coin comes up tails, please use the space provided to
write an answer to question Q2: “Have you smoked mari-
juana in the last year?”

The key fact here is that only the respondent knows which ques-
tion he or she is answering. This gives people plausible deniability.
Someone answering “yes” might have easily flipped heads and
answered the first, innocuous question rather than the second, em-
barrassing one, and the designer of the survey would never know
the difference. This reduces the incentive to lie.

Moreover, despite the partial invisibility cloak we’ve provided
to the marijuana users in our sample, we can still use the results
of the survey to answer the question we care about: what fraction



conditional probability 231

of students have used marijuana in the past year? We’ll use the
following notation:

• Let Y be the event “a randomly chosen student answers yes.”

• Let Q1 be the event “the student provided an answer to ques-
tion 1, about their Social Security number.”

• Let Q2 be the event “the student provided an answer to ques-
tion 2, about their marijuana use.”

From the survey, we have an estimate of P(Y), which is the overall
fraction of survey respondents providing a “yes” answer. We really
want to know P(Y | Q2), the probability that a randomly chosen
student will answer “yes”, given that he or she was answering the
marijuana question. The problem is that we don’t know which
students were answering the marijuana question.

To understand the rule of total probability, let’s return to our
hypothetical survey in which we want to know the answer to the
question: what fraction of students have used marijuana in the
past year? Then we have each survey respondent privately flip a
coin to determine whether they answer an innocurous question
(Q1) or the question about marijuana use (Q2). We used the fol-
lowing notation:

• Let Y be the event “a randomly chosen student answers yes.”

• Let Q1 be the event “the student provided an answer to ques-
tion 1, about their Social Security number.”

• Let Q2 be the event “the student provided an answer to ques-
tion 2, about their marijuana use.”

To solve this problem, we’ll use rule of total probability. In the
case of our drug-use survey, this means that

P(Y) = P(Y, Q1) + P(Y, Q2) . (11.3)

In words, this equation says that there are two ways to get a yes
answer: from someone answering the social-security-number ques-
tion, and from someone answering the drugs question. The total
number of yes answers will be the sum of the yes answers from
both types in this mixture.

Now let’s re-write Equation 11.3 slightly, by applying the rule
for conditional probabilities to each of the two joint probabilities
on the right-hand side of this equation:

P(Y) = P(Q1) · P(Y | Q1) + P(Q2) · P(Y | Q2) . (11.4)
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This equation now says that the overall probability P(Y) is a
weighted average of two conditional probabilities:

• P(Y | Q1), the probability that a randomly chosen student
will answer “yes”, given that he or she was answering the
social-security-number question.

• P(Y | Q2), the probability that a randomly chosen student
will answer “yes”, given that he or she was answering the
marijuana question.

The weights in this average are the probabilities for each question:
P(Q1) and P(Q2), respectively.

Now we’re ready to use Equation 11.4 to calculate the probabil-
ity that we care about: P(Y | Q2). We know that P(Q1) = P(Q2) =

0.5, since a coin flip was used to determine whether Q1 or Q2 was
answered. Moreover, we also know that P(Y | Q1) = 0.5, since it
is equally likely that someone’s Social Security number will end in
an even or odd digit.8 8 This survey design relies upon the fact

that the survey designer doesn’t know
anyone’s Social Security number. If
you were running this survey in a large
company, where people’s SSNs were
actually on file, you’d need to come up
with some other innocuous question
whose answer was unknown to the
employer, but for which P(Y | Q1) was
known.

We can use this information to simplify the equation above:

P(Y) = 0.5 · 0.5 + 0.5 · P(Y | Q2) ,

or equivalently,

P(Y | Q2) = 2 · {P(Y)− 0.25} .

Suppose, for example, that 35% of survey respondents answer yes,
so that P(Y) = 0.35. This implies that

P(Y | Q2) = 2 · (0.35− 0.25) = 0.2 .

We would therefore estimate that about 20% of students have
smoked marijuana in the last year.
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Independence and compounding

Long unbroken runs of outstanding performance, whether in
sports or life, hold a special fascination. They can teach us a lot
about probability—specifically, something called the compounding
rule—and about the idea of a lurking variable.

Joltin’ Joe and the compounding rule

Joe DiMaggio, widely regarded as one of the greatest baseball
players in history, was a mid-century American icon. Born in 1914

to a poor family of Italian immigrants in California, “Joltin’ Joe”
would eventually reach a level of fame that transcended sport.
Ordinary people regarded him as a folk hero. Marilyn Monroe
eloped with him. Hundreds of writers and artists—from Hem-
ingway to Madonna, Rodgers and Hammerstein to Simon and
Garfunkel—mentioned him in their most enduring works.

Why was DiMaggio so famous? Why, in 1999, during the last
days of his final battle with lung cancer, did the New York Times
describe the scene as a “national vigil”?

Part of it was DiMaggio’s courtly manner. His teammate Phil
Rizzuto said of him:

There was an aura about him. He walked like no one else
walked. He did things so easily. He was immaculate in every-
thing he did. Kings of State wanted to meet him and be with
him. He could fit in any place in the world.1 1 Baseball Hall of Fame biography of Joe

DiMaggio, http://baseballhall.org/
hof/dimaggio-joe.When DiMaggio died in 1999, he was buried in a grave bearing a

simple inscription: “Dignity, grace, and elegance personified.”
Of course, the larger part of DiMaggio’s fame derived from his

accomplishments on the baseball diamond. His most impressive
feat there undoubtedly came over the summer of 1941, when he
successfully got a hit in 56 straight games. This singular, record-
smashing performance put DiMaggio squarely in the national

http://baseballhall.org/hof/dimaggio-joe
http://baseballhall.org/hof/dimaggio-joe
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spotlight for the rest of his life. As of 2016, his 56-game hitting
streak is still the longest ever; most baseball fans consider it un-
beatable. In fact, Stephen Jay Gould, the eminent biologist and
baseball fan, once called DiMaggio’s hitting streak “the most ex-
traordinary thing that ever happened in American sports.”2 2 Stephen Jay Gould, “The Streak of

Streaks.” New York Review of Books,
August 18, 1988.

So if you want to know why Joe DiMaggio was such a cul-
tural icon, it helps to know why that hitting streak in the summer
of 1941 was so extraordinary. Here’s one reason: most sporting
records are only incrementally better than the ones they supercede.
Not so here. DiMaggio’s 56-game record towers over the second-
and third-place hitting streaks in Major League history: 45 games,
by Willie Keeler, in 1897; and 44 games, by Pete Rose, in 1978.

But the deeper reason has to do with probability. As Gould put
it: not only did DiMaggio successfully beat 56 Major League pitch-
ers in a row, but “he beat the hardest taskmaster of all . . . Lady
Luck.”3 As we’ll now see, that 56-game hitting streak was so 3 idid.

wildly improbable that it really never should have happened in
the first place—even for a player as good as Joe DiMaggio.

Winning streaks and the compounding rule

Winning streaks in sports, like Joe DiMaggio’s, provide a handy
metaphor for other, more familiar runs of luck:

• A mutual-fund manager outperforms the stock market for 15

years straight.

• A World-War II airman completes 25 combat missions, and
gets to go home.

• An ordinary person successfully takes a shower for 5000 days
in a row without slipping.

• A child goes three straight years without catching a cold
from other kids at school.

Each of these is, in its own way, a winning streak—although, as
any parent of young kids will tell you, some winning streaks are
more miraculous than others.

So in the spirit of understanding the mathematics behind any
long unbroken run of good (or bad) luck, let’s take up the follow-
ing question. What probability might we reasonably associate with
Joe DiMaggio’s all-time record hitting streak of 56 games?
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This question brings us to another very useful rule in prob-
ability theory, called the compounding rule. The essence of the
compounding rule is that probabilities for independent events
can be multiplied together to calculate their joint probability. To
state this as an equation, let’s suppose that A and B are inde-
pendent events—that is, they convey no information about each
other. Then the joint probability of A and B can be calculated as
P(A and B) = P(A) · P(B).

The obvious example is when flipping a coin. Since each flip is
independent, the probability of getting heads on two successive
flips is

P(Two heads in a row) = P(H on flip 1) · P(H on flip 2)

= 0.5 · 0.5 = 0.25 .

The same line of reasoning works for any number of coin flips. For
example,

P(Three heads in a row) = P(H on flip 1) · P(H on flip 2) · P(H on flip 3)

= 0.5 · 0.5 · 0.5

= 0.53 = 0.125 ;

and so on for four, five, or a hundred flips.
As a general rule, suppose that we have N independent en-

counters in a row with a random outcome—like a coin flip or a
baseball game. On each encounter, there is some probability P that
an event of interest will happen—like the coin coming up heads,
or Joe DiMaggio getting a hit. The compounding rule tells us the
probability that we’ll experience a “winning streak” of N events in
a row.

P(N events in N encounters) = P · P · · · · · P︸ ︷︷ ︸
N times

= PN .

Of course, if the event itself is a bad one, we’d think of this as a
losing streak instead, but the math is the same.

You may recall that this setting—a run of N independent en-
counters with a random outcome, each of which has some chance
P of yielding an event—is exactly where we’ve used the NP rule to
calculate an expected value. In this sense, the compounding rule
is a close cousin of the NP rule: they have the same assumptions,
but they answer different questions. The NP rule tells us that the
expected number of events is N × P—remember, frequency times
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risk—while the compounding rule tells us that the probability of
experiencing the event on every single encounter is PN .

The probability of Joe DiMaggio’s hitting streak

The compounding rule now gives us a handy tool to estimate the
probability of Joe DiMaggio’s hitting streak. Let’s make a key
simplifying assumption: each baseball game is like the flip of a
coin, where “heads” means that DiMaggio gets a hit in that game.
We’ll use the symbol Phit to denote the probability that DiMaggio
gets a hit in a single game; unlike for a real coin flip, Phit is not
necessarily 50%.

Under this coin-flipping model, each game is independent: the
current game doesn’t affect the next one. So the probability that
Joe DiMaggio gets a hit for two games in a row is

P(hit in two games in a row) = Phit · Phit .

And the probability that he gets a hit for N games in a row is

P(hit in N games in a row) = (Phit)
N ,

using the compounding rule.
To get a number for Phit, the probability that DiMaggio gets

a hit in a single game, we’ll use data from the 1940-42 baseball
seasons, when Joe DiMaggio got a hit in about 80% of his games.
Using the compounding rule, we find that

P(DiMaggio gets a hit 56 games in a row) = (0.80)56

≈ 1
250,000

.

So Joe DiMaggio had about a 1-in-250,000 shot at hitting safely
every game in a row for any given 56-game stretch in his career.
Yet he did anyway. The daunting improbability of this feat helps
to explain why his record has never been broken.

Luck, or skill?

Both Western and Eastern philosophical traditions have, for thou-
sands of years, emphasized the role of luck in our lives. As King
Solomon said in the book of Ecclesiastes:

I returned, and saw under the sun, that the race is not to the
swift, nor the battle to the strong, neither yet bread to the
wise, nor yet riches to men of understanding, nor yet favour
to men of skill; but time and chance happeneth to them all.
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Joe DiMaggio’s 56-game hitting streak can serve as a metaphor for
us all, as we face those inevitable curve balls and unlucky bounces
in our own lives. Remember: Joltin’ Joe had to be very lucky to
achieve what he did, and even he had a game without a hit every
now and again.

But does that mean that DiMaggio’s streak was all down to
chance? Not even close! His incredible skill at baseball had every-
thing to do with it.

To see why, let’s run through the same calculation, except with
a different player’s statistics—those of Pete Rose, another of the
greatest hitters in the history of baseball. In 1978, when he went
on his own hitting streak of 44 games, Rose was a .300 hitter, and
he got a hit in about 76% of his games. This is only 4% lower than
DiMaggio’s per-game hit probability of 78.7%. Yet when we use
the compounding rule, we find that

P(Rose gets a hit 56 games in a row) = (0.760)56

≈ 1
5 million

.

Compare this with DiMaggio’s figure of 1 in 250,000. The com-
pounding rule has magnified a tiny 4% one-game difference be-
tween DiMaggio and Rose into an enormous gulf of probability.

And Rose himself was an extraordinary player! What about
for an average Major League player, who hits in about 68% of his
games? Here, we find that

P(Average player gets a hit 56 games in a row) = (0.68)56

≈ 1
2.5 billion

.

A 56-game streak by an average player will simply never happen.
The lesson here is that, whether it’s in baseball or stock-picking,

extraordinary streaks tend to happen to extraordinary performers
precisely because those performers are so skillful. They have a
higher P, a higher probability of success in a single encounter, than
the rest of us do. It is certainly true that DiMaggio needed a lot of
luck—some pitching mistakes here, some friendly bounces there—
to hit safely for 56 games in a row. But he also needed to be very
skillful in the first place, so that the odds he needed to overcome
were “only” a million to one.

What Solomon said is true: chance happeneth to them all. But it
happeneth a lot more often to those who are better prepared.



238 data science

Everyday risks and the compounding rule

The same math behind Joe DiMaggio’s hitting streak can help
us analyze the kind of repeated, everyday risks that Jared Dia-
mond warned us about. To take a specific example, let’s revisit
the following question: what is your probability of dying from an
accidental fall at some point over the next 30 years? And how can
small differences in your own behavior affect this number?

Let’s first observe, from Table 10.1 on page 204, that the yearly
death rate due to an accidental fall is about 10 per 100,000 people:
P(deadly fall this year) = 0.0001. Now, as a guide to thinking
about what is likely to happen to any one person, a population
average can be misleading. After all, the average person has one
testicle; averages obscure a lot variation. In the case at hand, some
people will have a much lower-than-average risk of deadly fall,
and others will have a higher risk.

Still, we can work through a thought experiment involving
some imaginary Homo Mediocritus, whose individual risk of a
daily fall is equal to the population average—just like we some-
times talk about the average Major League hitter as if he were a
real person. But we should keep in mind that it’s just a thought
experiment, and not a prediction about the future. (In fact, soon
you’ll see an example of how forgetting this point can lead you
badly astray.)

With that caveat issued, let’s say that our “average person” has
a yearly risk of a deadly fall equal to 0.0001. What about the daily
risk? We know that surviving the year without a deadly fall means
going on a 365-day winning streak, which has probability

P(365-day streak without a deadly fall) = 0.9999 .

If we assume that each day is independent of the last, then the
compounding rule allows us to back out what the daily risk of a
deadly fall, must be. How? Well, the compounding rule says that

P(365-day streak without a deadly fall) = 0.9999 = (something)365 ,

where “something” is your daily survival probability. From
this equation, we can deduce that this number is pretty high:
99.99997%. This means that your chance of a deadly fall on any
given day is roughly the same chance that, if you threw 22 quar-
ters into the air right now, all of them would land hands.
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What about surviving for 30 years with no deadly fall? To cal-
culate this, we compound the daily survival probability over a
much longer period:

P(30-year streak without a deadly fall) = (0.9999997)365×30 ≈ 0.997 .

So if you have an average daily risk, then you have a 0.3% chance
of dying in a fall at some point over the next 30 years—hardly
negligible, but still small.

The role of behavior. Now let’s change the numbers just a tiny
bit. What if your daily survivorship probability was a bit smaller
than that of our hypothetical average person, because of some
choice you made regularly—like not putting a towel down on the
bathroom floor after a shower, or not holding the handrail as you
walk down the stairs? To invoke the DiMaggio/Rose example:
what if you became only slightly less skillful at not falling?

For some specific numbers, we’ll make an analogy with losing
weight. Imagine that your daily habit is to have a single mid-
morning Tic-Tac, which has 2 calories. One day, you decide that
this indulgence is incompatible with the healthy lifestyle you
aspire to. You resolve to cut back. But you know that crash diets
rarely work, so you decide to go slowly: you’ll forego that Tic-Tac
only once every 10 days.

You’ve just reduced your average daily calorie consumption
by about 1/100th of a percent. Will you lose weight over the long
run? Alas, no: even the most dubiously optimistic of online calorie
calculators would report that, over 30 years, you will shed about
half a pound of body fat. For reasons not worth going into, you’d
probably lose a lot less.

But what if you made choices that reduced your daily fall-
survivorship probability by the same tiny amount of 1/100 of a
percent? We’re not talking here about the kind of lifestyle change
that has you making daily, feckless attempts at Simone Biles-level
gymnastics on a wet bathroom floor. This is more like “walking
slightly too fast with scissors” territory—something modestly
inadvisable that would reduce your daily survival probability from
99.99997% to “merely” 99.99%. Nonetheless, while this change
may seem harmless, the 30-year math looks forbidding:

P(30-year streak without a deadly fall) = (0.9999)365×30 ≈ 0.33 .

Reducing your daily calorie consumption by one-tenth of a Tic-
Tac will not make you any thinner. But reducing your daily fall-
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survivorship probability by the same amount has about a 67%
chance of killing you.4 4 One caveat here: viewed from another

angle, reducing your daily survivorship
probability to 99.99% is actually pretty
extreme. It means that your daily
risk of a deadly fall has become one
in 10,000, which is 300 times higher
than average. So while the absolute
difference in risk is tiny, and the relative
difference in survivorship probability
is also tiny, the relative difference in
fall risk is large—but of course, it’s
the survivorship probability that gets
compounded up.

Post script. There are two lessons here. First, population-average
probabilities, like P(deadly fall) = 0.0001, can be misleading.
When reasoning about risks over the long term, what really mat-
ters is your own conditional probability, P(deadly fall | behavior).
That’s what gets compounded to calculate the probability of a long
winning streak. And it’s the people with the highest conditional
probabilities that contribute disproportionately to the overall fig-
ures in Table 10.1. If you don’t want to end up as a statistic, keep
your conditional probability of a disaster low!

Second, always remember that probability compounds multi-
plicatively, like interest on your credit cards, and not additively,
like calories. Small differences in probability can have a dramatic
effect over the long term.

The hot hand: fact or fiction?

The last few examples have taught us to calculate joint probabili-
ties under the assumption of independence, using the compound-
ing rule. Ideally, of course, we should never just assume that two
events A and B are independent. Rather, we should use data to
check whether they are!

Remember the definition of independence here: wo events
are independent if they convey no information about each other.
Mathematically, we can express this idea in terms of conditional
probabilities: events A and B are independent if P(A) = P(A |
B) = P(A | not B). Therefore, if we want to check whether A and
B are really independent, we can carefully observe how often these
two events occur together, and verify whether this equation is true.

A good example here is related to the “hot-hand” phenomenon
in sports. Basketball fans in particular—and even coaches, players,
and broadcasters—tend to believe in the hot hand: that if a player
makes one shot, then he or she is more likely to make the next
shot.5 To express this idea in an equation, believers in the hot

5 A popular video game from the 1990s,
NBA Jam, immortalized this idea for
anyone of that era. If you made three
shots in a row, a game announcer
would bellow “He’s on fire!!” Your
basketball avatar would temporarily
be granted otherwordly speed, hops,
and accuracy—and yes, the ball would
actually be on fire whenever you
touched it.

hand would assert that

P(makes 2nd shot | makes 1st) > P(makes 2nd shot | misses 1st) .

In other words, two successive shots are not independent. You can
imagine analogous formulations of this idea in walks of life other
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Frequency of made shots after. . .
Player 3 misses 2 misses 1 miss overall 1 hit 2 hits 3 hits

Clint Richardson 0.5 0.47 0.56 0.5 0.5 0.49 0.48

Julius Erving 0.52 0.51 0.51 0.52 0.52 0.53 0.48

Lionel Hollins 0.5 0.49 0.46 0.46 0.46 0.46 0.32

Maurice Cheeks 0.77 0.6 0.6 0.54 0.56 0.55 0.59

Caldwell Jones 0.5 0.48 0.47 0.43 0.47 0.45 0.27

Andrew Toney 0.52 0.53 0.51 0.4 0.46 0.43 0.34

Bobby Jones 0.61 0.58 0.58 0.47 0.54 0.53 0.53

Steve Mix 0.7 0.56 0.52 0.48 0.52 0.51 0.36

Daryl Dawkins 0.88 0.73 0.71 0.58 0.62 0.57 0.51

Table 12.1: Data on the “hot hand”
phenomenon for the 1980–81 Philadel-
phia 76ers. Keep in mind that some of
the sample sizes used to calculate these
frequencies are quite small, and thus
potentially non-representative.

than sports, from picking stocks to playing poker to creating hit
songs or viral videos.

So is the hot hand actually real? This turns out to be a surpris-
ingly tricky question to answer. In a famous study from 1985,
three economists looked at data from both the NBA and college
basketball and concluded as follows:

Detailed analyses of the shooting records of the Philadel-
phia 76ers provided no evidence for a positive correlation
between the outcomes of successive shots. The same conclu-
sions emerged from free-throw records of the Boston Celtics,
and from a controlled shooting experiment with the men and
women of Cornell’s varsity teams.6

6 Gilovich, Thomas; Tversky, A.; Val-
lone, R. (1985). “The Hot Hand in
Basketball: On the Misperception of
Random Sequences.” Cognitive Psychol-
ogy 3 (17): 295–314.

For example, Table 12.1 shows the authors’ data for the 9 play-
ers on the 1980–81 Philadelphia 76ers. The table shows how
frequently players made shots after streaks of different lengths
(e.g. after 2 hits in a row, or after 1 miss). For example, Julius Erv-
ing made 52% of his shots overall, 52% of his shots after 1 made
basket, and 48% of his shots after 3 made baskets—no “hot hand”
at all. If you examine the table closely, you’ll find that there’s not
much evidence for the hot-hand hypothesis for any of the players.7 7 The authors of the 1985 study verified

this using formal statistical hypothesis
tests.

If anything, the evidence seems to go the other way: that most
players on the 76ers were less likely to make a shot after 2 or 3

made baskets. Ironically, this might reflect the fact that the play-
ers themselves believed in the hot-hand phenomenon: if a player
who fancies himself “hot” starts to take riskier shots, his shooting
percentage will predictably drop.

However, some recent studies have questioned both the meth-
ods and the conclusions of the original 1985 study. For example,
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two researchers at Stanford analyzed data from Major League
Baseball and claimed to have found robust evidence for a hot hand
across many different statistical categories.8 Their basic argument 8 The Hot-Hand Fallacy: Cognitive

Mistakes or Equilibrium Adjustments?
Evidence from Major League Baseball.
Brett Green and Jeffrey Zwiebel, Stan-
ford University 2013. As of this writing,
the paper had not been peer reviewed.

is that, in most sports, it would be really hard to find evidence for
the hot-hand phenomenon, even if it really existed. The reason:
defenses adapt. For example, as they point out, “a hot shooter
in basketball should be defended more intensely. . . which will
lower his shooting percentage.” This happens a lot less in baseball,
where the scope for defensive adaptation is limited.

So the jury is still out on the hot-hand phenomenon in sports.
However, it seems fair to say that any effects that might be found
in the future are likely to be small, given that nobody else has
found them yet despite looking pretty intensely.

The fallacy of mistaken compounding

The compounding rule is very useful for understanding long
unbroken runs of luck. However, it’s easy to take this rule too far,
by applying it to situations where it isn’t appropriate.

Recall the key assumption of the compounding rule: N encoun-
ters in a row with a random outcome, and each encounter is inde-
pendent of the previous one. The assumption of independence—
that no single event conveys any information about any other
event—is crucial here. Without this assumption, we cannot calcu-
late a joint probability by naïvely multiplying together individual
probabilities.9 9 In fact, we’d need a different rule:

if A and B are not independent, then
P(A and B) = P(A) · P(B | A). Refer to
the section on conditional probability.

It turns out that true independence is rarer than you might
think! Yet despite this, it’s common for people to assume that two
events are independent, and to plunge ahead with some proba-
bility calculation, without thinking too hard about whether inde-
pendence is even approximately correct. This fallacy of mistaken
compounding occurs so frequently that we’ll pause to consider two
examples.

Lurking variables and mistaken compounding

Ken Cho, a tech entrepreneur in Austin, Texas, has been nick-
named the “Forrest Gump of financial disasters.” You might recall
that, in the film, Forrest Gump ends up witnessing some of the
most important historical events of the 20th century. Similarly, Ken
Cho had a ringside seat for two of the biggest and most startling
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bankruptcies in history. Before starting his own successful com-
pany, called Spredfast, Mr. Cho held jobs in finance at both Enron
and Lehman Brothers, before each went kaput. Of course, Mr. Cho
himself had nothing to do with any accounting shenanigans. “It’s
just a coincidence,” he says ruefully—a coincidence that makes for
a strikingly unlucky CV.

But of course, it also makes for some interesting conversa-
tions. In fact, Cho admits that he’s come to embrace the nickname.
“Whenever I’m chatting with someone next to me on an airplane,
and they find out about Lehman and Enron, they always laugh,”
Cho recounts. “But sometimes they also give me a funny look, like
they’re a little embarrassed to ask me where I’m working now. I
get the impression that they might want to go sell some stock.”

Naturally, as statisticians, we found ourselves wondering: just
how improbable is a CV like Mr. Cho’s?

Reasoning about coincidence

Reasoning correctly about coincidences of this kind often boils
down to understanding the concept of independence. Remember,
two events A and B are independent of each other if P(A) = P(A |
B) = P(A | not B). That is, knowing whether B occurs doesn’t
change your assessment of how likely A is to occur.

When we’re doing probability calculations, we sometimes as-
sume that two events are independent of each other, especially
when the causes of the events are thought to be unrelated. If
you’re flipping coins or rolling dice, this seems obvious. In other
cases, we might question whether two events are really indepen-
dent, but assume so anyway. Usually we do this in the belief that
the events are approximately independent, and that the stakes are
small enough to tolerate the approximation. A good example of
this came when we assumed independence for two of Joe DiMag-
gio’s at-bats, in our discussion of winning streaks. While might
not be exactly true, most of the research on the “hot hand” in
sports suggests that it’s at least approximately true.

But in other cases, you can get badly tripped up by naïvely
assuming independence. Unexpected correlations, especially in the
form of lurking variables, come up everywhere.

A lurking variable is some third variable that is correlated with
each of the two variables you’re interested in. Lurking variables
can produce some surprising correlations. In 2012, for example,
data scientists at the predictive-analytics firm Kaggle claimed that,

https://en.wikipedia.org/wiki/Enron_scandal
https://en.wikipedia.org/wiki/Bankruptcy_of_Lehman_Brothers
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based on an analysis of the used-car market, orange used cars
were more dependable than used cars in tamer colors. In other
words:

P(dependable | orange) > P(dependable | not orange) .

Why would this be? To most people, paint color and depend-
ability seem like they ought to be independent. To explain why
they weren’t, Kaggle invoked a possible lurking variable: maybe
owners of orange cars tend to be more devoted to their cars than
the average person, and this difference shows up in the reliability
statistics.10 Another possible lurking variable here might involve 10 “Big Data Uncovers Some Weird

Correlations.” Deborah Gage, Wall
Street Journal online edition, March 23,
2014.

the rental-car market. Former rental cars have often been driven
hard, and are not known for their reliability; two minutes of casual
web surfing will reveal that the tag “drive it like a rental” shows
up repeatedly on viral videos of dangerous automotive stunts.
And since rental cars are almost never orange—few would want to
rent them—the used-car market is effectively missing a cohort of
unreliable orange cars.

Just how many financial Forrest Gumps are there?

The point is simple: life is full of lurking variables. Once we prop-
erly account for them, many things that seem like bizarre coinci-
dences turn out to be much more prosaic. Let’s take the example
of Ken Cho’s unlucky CV. How small is P(E, L), the joint probabil-
ity that a randomly chosen American worked at both Enron and
Lehman Brothers?

You might naïvely calculate it as follows. There were about 200

million working-age Americans throughout the period in ques-
tion (2001–7). At the time of their implosions, Enron and Lehman
Brothers had about 20,000 and 26,000 employees, respectively.
Therefore, if we assume that these events are independent, we
might estimate P(E, L) as

P(E, L) = P(E) · P(L)

≈ 20, 000
200, 000, 000

· 26, 000
200, 000, 000

≈ 1.3× 10−8 ,

or about 1 in 100 million. This looks pretty unusual! Remember
the NP rule: if this back-of-the-envelope reckoning is right, we
would only expect that there are two such financial Forrest Gumps
in the entire country. (That’s 200 million adults, times a probability
of 1 in 100 million.)



independence and compounding 245

But this is an example of the fallacy of mistaken compounding:
working at Enron (E) and working at Lehman Brothers (L) are far
from independent events. In fact, once we condition on event E,
we become aware of an obvious lurking variable: we know that
Mr. Cho worked in the finance industry, making it much more
likely that he would also have held a job at Lehman.

The correct calculation properly accounts for this fact. For non-
independent events, one of our four basic rules of probability
(Equation 10.1 on page 214) says that

P(E, L) = P(E) · P(L | E) .

In other words, we can’t just multiply P(E) and P(L) together to
get P(E, L). In lieu of P(L), we should be using the P(L | E): the
conditional probability that someone worked for Lehman Brothers
(L), given that they also worked in finance for Enron (E).

Let’s calculate a very rough estimate for P(L | E). There were
about 2 million professionals working in this sector of the finance
industry at the time, meaning that the correct denominator in
P(L | E) is more like 2 million, not 200 million.11 Therefore, a 11 The real denominator is probably

even smaller than 2 million, because
these were considered excellent jobs in
the finance industry, and candidates for
them would have been drawn from a
smaller pool. But we’re just going for a
ballpark figure here.

better estimate for P(E, L) would be

P(E, L) = P(E) · P(L | E)

≈ 20, 000
200, 000, 000

· 26, 000
2, 000, 000

≈ 1.3× 10−6 ,

or more like one in a million. In the context of a country as large
as the U.S., this no longer looks unusual. In fact, since there are
200 million working-age adults, we would actually expect that
there are about 200 such Forrest Gumps out there who held jobs at
both Lehman and Enron.

Lock up the Christmas sweaters

A very common source of lurking variables can be found in
our genes. Consider the example of colorblindness, which runs
strongly in families. For example, there is at least one family
out there in which there are seven male cousins from one set of
grandparents—four Monroe brothers, two Wappler brothers, and
one Scott—all of whom of are red-green colorblind. Christmas
with this family involves some notably poor choices of sweaters,
chromatically speaking.

How big of a coincidence is it that all seven male cousins in an
extended family will be colorblind? Working this out exactly gets
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a bit tedious. So instead, we’ll use the rule for joint probabilities
to calculate a related but simpler probability: the chance that a
randomly selected pair of brothers from the U.S. population will
be red-green colorblind. Let A indicate that the first brother is
colorblind, and B that the second brother is colorblind. We want
the joint probability P(A, B).

It’s known that about 8% of men are red-green colorblind,
meaning that, without any additional information, P(A) = P(B) =
0.08. Therefore, the naïve (and wrong) estimate for P(A, B) would
be 0.082 = 0.0064. This would imply that, of all pairs of brothers,
roughly half a percent of these pairs are both colorblind.

But again, this is an example of the fallacy of mistaken com-
pounding. To calculate P(A, B) correctly, we need to properly
account for non-independence, meaning that we need to know
both P(A) and P(B | A). Remember, we are conditioning on the
knowledge that the first brother is colorblind. Since colorblindness
is genetic, P(B | A) will be larger than 0.08.

Specifically, Mom’s genes are the lurking variable here: a col-
orblind male must have inherited an X chromosome with the col-
orblindness gene from his mother.12 To make things simple, let’s 12 This is why colorblindness is so much

rarer in women than in men. Men
have only one X chromosome, and so
they need only one copy of the gene to
end up colorblind. But females need
two copies of the gene, one on each X
chromosome, to end up colorblind. This
is much less likely.

assume that the brothers’ mother has normal color vision, which is
true of 99.5% of women. Thus the only way the first brother could
be colorblind is if mom has one normal X chromosome, and one X
chromosome with the colorblindness gene. The second brother in-
herits one of these two X chromosomes; either one is equally likely.
From this, we can deduce that P(B | A) = 0.5.

Putting these facts together, we find that

P(both brothers colorblind) = P(1st brother colorblind)

× P(2nd brother colorblind | 1st brother colorblind)

= 0.08× 0.5

= 0.04 .

So about 4% of all pairs of brothers will be colorblind. For a ran-
domly selected family of four boys, the probability that they will
all be colorblind drops only by a factor of four, to 0.08 · 0.53, or 1%.
Such families are rare, but not exceedingly rare.

Postscript. We’ve now seen two simple examples of the fallacy of
mistaken compounding, where the assumption of independence
made our naïve calculations diverge badly from the truth. The
moral of the story is that life is full of lurking variables. These
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have a way of making a fool of anyone who assumes indepen-
dence without bothering to check, or to think the matter through.
Therefore, always think before you compound.





13
Bayes’ rule

Updating conditional probabilities

Our probabilities are always contingent upon what we know.

The probability that a patient with chest pains has suffered a heart attack:
Does the patient feel the pain radiating down his left side?
What does his ECG look like? Does his blood test reveal
elevated levels of myoglobin?

The probability of rain this afternoon in Milwaukee: What are the
current temperature and barometric pressure? What does the
radar show? Was it raining this morning in Chicago?

The probability that a person on trial is actually guilty: Did the ac-
cused have a motive? Means? Opportunity? Were any bloody
gloves left at the scene that reveal a likely DNA match?

When our knowledge changes, our probabilities must change,
too. Bayes’ rule tells us how to change them.

Imagine the person in charge of a Toyota factory who starts
with a subjective probability assessment for some proposition A,
like “our engine assembly robots are functioning properly.” Just to
put a number on it, let’s say P(A) = 0.95; we might have arrived at
this judgment, for example, based on the fact that the robots have
been down for 5% of the time over the previous month. In the
absence of any other information, this is as good a guess as any.

Now we learn something new, like information B: the last 5 en-
gines off the assembly line all failed inspection. Before we believed
there was a 95% chance that the assembly line was working fine.
What about now?

Figure 13.1: Bayes’ rule is named after
Thomas Bayes (above), an English
reverend of the 18th century who first
derived the result. It was published
posthumously in 1763 in “An Essay
towards solving a Problem in the
Doctrine of Chances.”

Bayes’s rule is an explicit equation that tells us how to incorpo-
rate this new information, turning our initial probability P(A) into
a new, updated probability:

P(A | B) =
P(A) · P(B | A)

P(B)
. (13.1)
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Each piece of this equation has a name:

• P(A) is the prior probability: how probable is A, before ever
having seen data B?

• P(A | B) is the posterior probability: how probable is A, now
that we’ve seen data B?

• P(B | A) is the likelihood: if A were true, how likely is it that
we’d see data B?

• P(B) is the marginal probability of B: how likely is it that
we’d see data B anyway, regardless of whether A is true or
not? This calculation is usually the tedious part of applying
Bayes’ rule. Usually, as we’ll see in the examples, we use the
rule of total probability, which we learned in the previous
chapter.

Have you found the two-headed coin?

To get a feel for what’s going on here, let’s see an example of
Bayes’ rule in action.

Imagine a jar with 1024 normal quarters. Into this jar, a friend
places a single two-headed quarter (i.e. with heads on both sides).
Your friend then gives the jar a good shake to mix up the coins.
You draw a single coin at random from the jar, and without exam-
ining it closely, flip the coin ten times. The coin comes up heads all
ten times. Are you holding the two-headed quarter, or an ordinary
quarter?

Now, you might be thinking that this example sounds pretty
artificial. But it’s not at all. In fact, in the real world, an awful lot
of time and energy is spent looking for metaphorical two-headed
coins—specifically, in any industry where companies compete
strenuously for talented employees. To see why, let’s change the
story just a little bit.

Suppose you’re in charge of a large trading desk at a major Wall
Street bank. You have 1025 employees under you, and each one is
responsible for managing a portfolio of stocks to make money for
your firm and its clients.

One day, a young trader knocks on your door and confidently
asks for a big raise. You ask her to make a case for why she de-
serves one. She replies:

Look at my trading record. I’ve been with the company for
ten months, and in each of those ten months, my portfolio



bayes’ rule 251

returns have been in the top half of all the portfolios managed
by my peers on the trading floor. If I were just an average
trader, this would be very unlikely. In fact, the probability
that an average trader would see above-average results for
ten months in a row is only (1/2)10, which is less than one
chance in a thousand. Since it’s unlikely I would be that lucky,
the implication is that I am a talented trader, and I should
therefore get a raise.

The math of this scenario is exactly the same as the one involv-
ing the big jar of quarters. Metaphorically, the trader is claiming
to be a two-headed coin (T), on the basis of some data D: that she
performs above average, every single month without fail.

But from your perspective, things are not so clear. Is the trader
lucky, or good? There are 1025 people in your office (i.e. 1025

coins). Now you’re confronted with the data that one of them
has had an above-average monthly return for ten months in a
row (i.e. D = “flipped heads ten times in a row”). This is admit-
tedly unlikely, and this person might therefore be an excellent
performer, worth paying a great deal to retain. But excellent per-
formers are probably also rare, so that the prior probability P(T)
is pretty small to begin with. To make an informed decision, you
need to know P(T | D): the posterior probability that the trader is
an above-average performer, given the data.

Applying Bayes’ rule. So our two-headed coin example definitely
has real-world applications. Let’s use it to see how a posterior
probability is calculated using Bayes’ rule:

P(T | D) =
P(T) · P(D | T)

P(D)
.

We’ll take this equation one piece at a time. First, what is P(T),
the prior probability that you are holding the two-headed quarter?
Well, there are 1025 quarters in the jar: 1024 ordinary ones, and
one two-headed quarter. Assuming that your friend mixed the
coins in the jar well enough, then you are just as likely to draw one
coin as another, and so P(T) must be 1/1025.

Next, what about P(D | T), the likelihood of flipping ten heads
in a row, given that you chose the two-headed quarter? Clearly
this is 1—if the quarter has two heads, there is no possibility of
seeing anything else.

Finally, what about P(D), the marginal probability of flipping
ten heads in a row? As is almost always the case when using
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Bayes’ rule, P(D) is the hard part to calculate. We will use the
law of total probability to do so:

P(D) = P(T) · P(D | T) + P(not T) · P(D | not T) .

Taking the pieces on the right-hand one by one:

• As we saw above, the prior probability of the two-headed
coin, P(T), is 1/1025.

• This means that the prior probability of an ordinary coin,
P(not T), must be 1024/1025.

• Also from above, we know that P(D | T) = 1.

• Finally, we can calculate P(D | not T) quite easily. If the
coin is an ordinary quarter, then there is a 50% chance of
getting heads on any one coin flip. Each flip is independent.
Therefore, the probability of a 10-head winning streak is

P(D | not T) =
1
2
× 1

2
× · · · × 1

2
(10 times)

=

(
1
2

)10
=

1
1024

.

We can now put all these pieces together:

P(T | D) =
P(T) · P(D | T)

P(T) · P(D | T) + P(not T) · P(D | not T)

=
1

1025 · 1
1

1025 · 1 + 1024
1025 · 1

1024
=

1/1025
2/1025

=
1
2

.

Perhaps surprisingly, there is only a 50% chance that you are hold-
ing the two-headed coin. Yes, flipping ten heads in a row with
a normal coin is very unlikely. But so is drawing the one two-
headed coin from a jar of 1024 normal coins! In fact, as the math
shows, both explanations for the data are equally unlikely, which
is why we’re left with a posterior probability of 0.5.

Two-headed coins in the wild. Let’s return to the scenario of the
trader knocking at your door, asking for a rise on the basis of a
10-month winning streak. In light of what you know about Bayes’
rule, which of the following replies is the most sensible?
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(A) “You’re right. Here’s a giant raise.”

(B) “Thank you for letting me know. While I need more data to
give you a raise, you’ve had a good ten months. I’ll review
your case again in 6 months and will look closely at the facts
you’ve showed me.”

The best answer depends very strongly on your beliefs about
whether excellent stock traders are common or rare. For example,
suppose you believe that 10% of all stock traders are truly excel-
lent, in the sense that they can reliably finish with above-average
returns, month after month; and that the other 90% just muddle
through and collect their thoroughly average bonus checks. Then
P(T) = 0.1, and

P(T | D) =
0.1 · 1

0.1 · 1 + 0.9 · 1
1024
≈ 0.991 ,

so that there is better than a 99% chance that your employee is
among those 10% of excellent performers. You should give her a
raise, or risk letting some other bank save you the trouble.

What if, however, you believed that excellence were much rarer,
say P(T) = 1/10000? In that case,

P(T | D) =
0.0001 · 1

0.0001 · 1 + 0.9999 · 1
1024
≈ 0.093 .

In this case, even though the ten-month hot streak was unusual—
P(D | not T) is small, at 1/1024—there is still more than a 90%
chance that your employee got lucky.

The moral of the story is that the prior probability in Bayes’
rule—in this case, the baseline rate of excellent stock traders, or
two-headed coins—plays a very important role in correctly esti-
mating conditional probabilities. Ignoring this prior probability is
a big mistake, and such a common one that it gets its own name:
the base-rate fallacy.1 1 en.wikipedia.org/wiki/Base_rate_

fallacySo just how rare are two-headed coins? While it’s very diffi-
cult to know the answer to this question in something like stock-
trading, it is worth pointing out one fact: in the above example, a
prior probability of 10% is almost surely too large. Remember the
NP rule: if this prior probability were right, then out of your office
of 1025 traders, you would expect there to be 0.1 × 1025 ≈ 100
of them with 10-month winning streaks, all at your door at once
clamoring for a raise. (Traders are not known for being shy about

en.wikipedia.org/wiki/Base_rate_fallacy
en.wikipedia.org/wiki/Base_rate_fallacy
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their winning streaks, or anything else.) Since this hasn’t hap-
pened, the prior probability P(T) = 0.1 is too high to be consistent
with all the data available, and should be revised downward.

On the flip side, we also know that two-headed coins in stock-
picking do exist, or else there would be no explanation for Warren
Buffett, known as the “Oracle of Omaha.” Over the last 50 years,
Warren Buffett has beaten the market so badly that it almost defies
belief: between 1964 and 2013, the share price of his holding com-
pany, Berkshire Hathaway, has risen by about 1 million percent,
versus only 2300% for the S&P 500 stock index.

This line of reasoning demonstrates that, while the prior prob-
ability often reflects your own knowledge about the world, it can
also be informed by data. Either way, it is very influential, and
should not be ignored.

Bayes’ rule and the law

Suppose you’re serving on a jury in the city of New York, with
a population of roughly 10 million people. A man stands before
you accused of murder, and you are asked to judge whether he
is guilty (G) or not guilty (∼ G). In his opening remarks, the
prosecutor tells you that the defendant has been arrested on
the strength of a single, overwhelming piece of evidence: that
his DNA matched a sample of DNA taken from the scene of the
crime. Let’s call denote this evidence by the letter D. To convince
you of the strength of this evidence, the prosecutor calls a forensic
scientist to the stand, who testifies that the probability that an in-
nocent person’s DNA would match the sample found at the crime
scene is only one in a million. The prosecution then rests its case.

Would you vote to convict this man?
If you answered “yes,” you might want to reconsider! You are

charged with assessing P(G | D)—that is, the probability that the
defendant is guilty, given the information that his DNA matched
the sample taken from the scene. Bayes’ rule tells us that

P(G | D) =
P(G) · P(D | G)

P(D)
=

P(G) · P(D | G)

P(D | G) · P(G) + P(D |∼ G)P(∼ G)
.

We know the following quantities:

• The prior probability of guilt, P(G), is about one in 10 mil-
lion. New York City has 10 million people, and one of them
committed the crime.
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• The probability of a false match, P(D |∼ G), is one in a
million, because the forensic scientist testied to this fact.

To use Bayes’ rule, let’s make one additional assumption: that the
likelihood, P(D | G), is equal to 1. This means we’re assuming
that, if the accused were guilty, there is a 100% chance of seeing a
positive result from the DNA test.

Let’s plug these numbers into Bayes’ rule and see what we get:

P(G | D) =
1

10,000,000 · 1
1 · 1

10,000,000 + 1
1,000,000 · 9,999,999

10,000,000

≈ 0.09 .

The probability of guilt looks to be only 9%! This result seems
shocking in light of the forensic scientist’s claim that P(D |∼
G) is so small: a “one in a million chance” of a positive match
for an innocent person. Yet the prior probability of guilt is very
low—P(G) is a mere one in 10 million—and so even very strong
evidence still only gets us up to P(G | D) = 0.09.

Conflating P(∼ G | D) with P(D |∼ G) is a serious error
in probabilistic reasoning. These two numbers are typically very
different from one another, because conditional probabilities aren’t
symmetric. As we’ve said more than once, P(practices hard |
plays in NBA) ≈ 1, while P(plays in NBA | practices hard) ≈ 0.
Getting this wrong—that is, conflating P(A | B) with P(B | A)—is
so common that it has its own name: the prosecutor’s fallacy.2 2 en.wikipedia.org/wiki/Prosecutor’

s_fallacyAn alternate way of thinking about this result is the following.
Of the 10 million innocent people in New York, ten would have
DNA matches merely by chance. The one guilty person would
also have a DNA match. Hence there are 11 people with a DNA
match, only one of whom is guilty, and so P(G | D) ≈ 1/11. Your
intuition may mislead, but Bayes’ rule never does!

en.wikipedia.org/wiki/Prosecutor's_fallacy
en.wikipedia.org/wiki/Prosecutor's_fallacy
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Probability distributions

Describing randomness

The major ideas of the last few chapters all boil down to a simple
idea: even random outcomes exhibit structure and obey certain
rules. In this chapter, we’ll learn to use these rules to build proba-
bility models, which employ the language of probability theory to
provide mathematical descriptions of random phenomena. Prob-
ability models can be used to answer interesting questions about
real-world systems. For example:

• American Airlines oversells a flight from Dallas to New York,
issuing 140 tickets for 134 seats, because they expect at least
6 no-shows (i.e. passengers who bought a ticket but fail to
show up for the flight). How likely is it that the airline will
have to bump someone to the next flight?

• Arsenal scores 1.6 goals per game; Manchester United scores
1.3 goals per game. How likely it is that Arsenal beats Man U
when they play each other?

• Since 1900, stocks have returned about 6.5% per year on
average, net of inflation, but with a lot of variability around
this mean. How does this variability affect the likely growth
of your investment portfolio? How likely it is that you won’t
meet your retirement goals with your current investment
strategy?

Building a probability model involves three steps.

(1) Identify the random variables in your system, A random vari-
able is just a term for any uncertain quantity or source of
randomness. In the airline example, there is just one uncertain
quantity: X = the number of no-shows on the Dallas–NYC
flight. In the soccer game between Arsenal and Man U, there
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are two uncertain quantities: X1 = the number of goals scored
by Arsenal, and X2 = the number of goals scored by Man U.

(2) Describe the possible outcomes for the random variables.
These possible outcomes are called events, and the set of all
possible events is referred to as the sample space of the proba-
bility model. In the airline example, our random variable X,
the number of no-shows, could be any number between 0 and
140 (the number of tickets sold). Thus the sample space is the
set of integers 0 to 140.

In the soccer-game example, the sample space is a bit more
complicated: it is the set of all possible scores (1-0, 2-3, 7-0,
etc.) in a soccer game.

(3) Finally, provide a rule for calculating probabilities associated
with each event in the sample space. This rule is called a prob-
ability distribution. In the airline example, this distribution
might be described using a simple lookup table based on his-
torical data, e.g. 1% of all flights have 1 no-show, 1.2% have 2

no-shows, 1.7% have 3 no-shows, and so forth.

There are three common types of random variables, correspond-
ing to three different types of sample spaces.

Categorical: the outcome will be one of many categories. For exam-
ple, which party will win the next U.S. presidential election:
Democrats, Republicans, or Other? Will your next interaction
with customer service be Good, Fair, or Unrepeatable?

Discrete: the possible outcomes are whole numbers (1, 2, 3, etc.).
Most of the examples we saw in our discussion of everyday
risks—numbers of shark attacks, falls in the shower, and so
forth—were discrete random variables.

Continuous: the random variable could be anything within a con-
tinuous range of numbers, like the price of Apple stock to-
morrow, or the size of subsurface oil reservoir.

Discrete and continuous random variables are sometimes grouped
together and called numerical random variables, since the possible
outcomes are all numbers.

An example. Here’s a silly example that will get the idea across.
Imagine that you’ve just pulled up to your new house after a long
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Figure 14.1: Probability distribution for
the size of a random U.S. household in
2015. The elements of the sample space
(the numbers x = 1 through x = 8) are
shown along the horizontal axis. The
probabilities P(X = x) are shown on
the vertical axis.

cross-country drive, only to discover that the movers have bug-
gered off and left all your furniture and boxes sitting in the front
yard. What a mess! (This actually happened to a friend of mine.)
You decide to ask your new neighbors for some help getting your
stuff indoors. Assuming your neighbors are the kindly type, how
many pairs of hands might come to your aid? Let’s use the letter
X to denote the (unknown) size of the household next door. The
table at right shows a probability distribution for X, taken from
U.S. census data in 2015; you might find this easier to visualize
using the barplot in Figure 14.1.

Size of house-
hold, x

Probability,
P(X = x)

1 0.280

2 0.336

3 0.155

4 0.132

5 0.060

6 0.023

7 0.011

8 0.003

Table 14.1: Probability distribution
for household size in the U.S. in 2015.
There is a vanishingly small probability
for a household of size 9 or higher,
which is just rounded off to zero here.

This probability distribution provides a complete representation
of your uncertainty in this situation. It has all the key features of
any probability distribution:

1. There is a random variable, or uncertain quantity—here, the
size of the household next door (X).

2. There is a sample space, or set of possible outcomes for the
random variable—here, the numbers 1 through 8.

3. Finally, there are probabilities for each outcome in the sample
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space—here provided via a simple look-up table. Notice that
the table uses big X to denote the random variable itself, and
little x to denote the elements of the sample space.

Most probability distributions won’t be this simple, but they will
all require specifying these three features.

Expected value: the mathematical definition

When you knock on your neighbors’ door in the hopes of getting
some help with your moving fiasco, how many people should you
“expect” to be living there?

The expected value of a probability distribution for a numeri-
cal random variable is just an average of the items in the sample
space—but a weighted average, rather than an ordinary average.
If you take the 8 numbers in the sample space of Figure 14.1 and
form their ordinary average, you get

Ordinary average =
1
8
· 1 + 1

8
· 2 + · · ·+ 1

8
· 7 + 1

8
· 8 = 4.5 .

Here, the weight on each number in the sample space is 1/8 =

0.125, since there are 8 numbers. This is not the expected value; it
give each number in the sample space an equal weight, ignoring
the fact that these numbers have different probabilities.

To calculate an expected value, we instead form an average
using unequal weights, given by the probabilities of each item in
the sample space:

Expected value = (0.280) · 1+(0.336) · 2+ · · ·+(0.011) · 7+(0.003) · 8 ≈ 2.5 .

The more likely numbers (e.g. 1 and 2) get higher weights than
1/8, while the unlikely numbers (e.g. 7 and 8) get lower weights.

This example conveys something important about expected
values. Even if the world is black and white, an expected value is
often grey. For example, the expected American household size is
2.5 people, a baseball player expects to get 0.25 hits per at bat, and
so forth.

As a general rule, suppose that the possible outcomes for a ran-
dom variable X are the numbers x1, . . . , xN . The formal definition
for the expected value of X is

E(X) =
N

∑
i=1

P(X = xi) · xi . (14.1)
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This measures the “center” or mean of the probability distribu-
tion. Later, we’ll learn how this more formal definition of expected
value can be reconciled with the NP rule—that is, with our previ-
ous understanding of expected value as a risk/frequency calcula-
tion.

A related concept is the variance, which measures the dispersion
or spread of a probability distribution. It is the expected (squared)
deviation from the mean, or

var(X) = E
(
{X− E(X)}2) .

The standard deviation of a probability distribution is σ = sd(X) =√
var(X). The standard deviation is more interpretable than the

variance, because it has the same units (dollars, miles, etc.) as the
random variable itself.

Parametric models for discrete outcomes

Of the three steps required to build a probability model, the
third—provide a rule that can be used to calculate probabilities for
each event in the sample space—is usually the hardest one. In fact,
for most scenarios, if we had to build such a rule from scratch,
we’d be in for an awful lot of careful, tedious work. Imagine try-
ing to list, one by one, the probabilities for all possible outcomes
of a soccer game, or all possible outcomes for the performance of a
portfolio containing a mix of stocks and bonds over 40 years.

Thus instead of building probability distributions from scratch,
we will rely on a simplification called a parametric probability model.
A parametric probability model involves a probability distribu-
tion that can be completely described using a relatively small set
of numbers, far smaller than the sample space itself. These num-
bers are called the parameters of the distribution. There are lots of
commonly used parametric models—you might have heard of the
normal, binomial, Poisson, and so forth—that have been invented
for specific purposes. A large part of getting better at probability
modeling is to learn about these existing parametric models, and
to gain an appreciation for the typical kinds of real-world prob-
lems where each one is appropriate.

Before we start, we need two quick definitions. First, by a dis-
crete random variable, we mean one whose sample space consists
of events that you can count on your fingers and toes. Examples
here include the number of no-shows on a flight, the number of
goals scored by Man U in a soccer game, or the number of gamma
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rays emitted by a gram of radioactive uranium over the next sec-
ond. (In a later section, we’ll discuss continuous random variables,
which can take on any value within a given range, like the price of
a stock or the speed of a tennis player’s serve.)

Second, suppose that the sample space for a discrete random
variable X consists of events x1, x2, and so forth. You’ll recall that,
to specify a probability model, we must provide a rule that can be
used to calculate P(X = xk) for each event. When building para-
metric probability models, this rule takes the form of a probability
mass function, or PMF:

P(X = xk) = f (xk | θ) .

In words, this equation says that the probability that X takes on
the value xk is a function of xk. The probability mass function
depends a number (or set of numbers) θ, called the parameter(s) of
the model.

To specify a parametric model for a discrete random variable,
we must both provide both the probability mass function f and
the parameter θ. This is best illustrated by example. We’ll consider
two: the binomial and Poisson distributions.

The binomial distribution

One of the simplest parametric models in all of probability theory
is called the binomial distribution, which generalizes the idea of
flipping a coin many times and counting the number of heads that
come up. The binomial distribution is a useful parametric model
for any situation with the following properties:

(1) We observe N different random events, each of which can be
either a “yes” or a “no.”

(2) The probability of any individual event being “yes” is equal to
P, a number between 0 and 1.

(3) Each event is independent of the others.

(4) The random variable X of interest is total number of “yes”
events. Thus the sample space is the set {0, 1, . . . , N − 1, N}.

The meaning of “yes” events and “no” events will be context-
dependent. For example, in the airline no-show example, we
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A binomial probability distribution: N = 140, p = 0.09
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Figure 14.2: A barplot showing the
probability distribution for the number
of no-shows on an overbooked airline
flight with 140 tickets sold, assuming a
no-show rate of 9% and that individual
no-shows are independent. The hori-
zontal axis has been truncated at k = 30
because the probability of more than 30

no-shows is vanishly small under the
binomial model.

might say that a “yes” event corresponds to a single passenger
failing to show up for his or her flight (which is probably not good
for the passenger, but definitely a success in the eyes of an airline
that’s overbooked a flight). Another example: in the PREDIMED
study of the Mediterranean diet, a “yes” event might correspond
to single study participant experiencing a heart attack.

If a random variable X satisfies the above four criteria, then it
follows a binomial distribution, and the PMF of X is

P(X = k) = f (k | N, P) =
(

N
k

)
Pk (1− P)N−k , (14.2)

where N and P are the parameters of the model. The notation
(N

k ), which we read aloud as “N choose k,” is shorthand for the
following expression in terms of factorials:(

N
k

)
=

N!
k!(N − k)!

.

This term, called a binomial coefficient, counts the number of
possible ways there are to achieve k “yes” events out of N total
events. (You’ll see how this is derived in a bit.)

Example: airline no-shows Let’s use the binomial distribution as
a probability model for our earlier example on airline no-shows.
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The airline sold tickets 140 people, each of which will either show
up to fly that day (a “yes” event) or not (a “no” event). Let’s make
two simplifying assumptions: (1) that each person decides to show
up or not independently of the other people, and (2) that the prob-
ability of any individual person failing to show up for the flight
is 9%.1 These assumptions make it possible to apply the binomial 1 This is the industry average, quoted

in “Passenger-Based Predictive Mod-
eling of Airline No-show Rates,”
by Lawrence, Hong, and Cherrier
(SIGKDD 2003 August 24-27, 2003).

distribution. Thus the distribution for X, the number of ticketed
passengers who fail to show up for the flight, has PMF

P(X = k) =
(

140
k

)
(0.09)k (1− 0.09)140−k .

This function of k, the number of no-shows, is plotted in Figure
14.2. The horizontal axis shows k; the vertical axis shows P(X = k)
under the binomial model with parameters N = 140, p = 0.09.

According to this model, the airline should expect to see around
E(X) = Np = 140 · 0.09 = 12.6 no shows, with a standard devia-
tion of sd(X) =

√
140 · 0.09 · (1− 0.09) ≈ 3.4. But remember that

the question of interest is: what is the probability of fewer than 6

no-shows? If this happens, the airline will have to compensate the
passengers they bump to the next flight. We can calculate this as

P(X < 6) = P(X = 0) + P(X = 1) + · · ·+ P(X = 5) ≈ 0.011 ,

i.e. by adding up the probabilities for 0 no-shows through 5 no-
shows. The airline should anticipate a 1.1% chance that more
people will show up than can fit on the plane.

The trade-offs of the binomial model. It’s worth noting that real air-
lines use much more complicated models than we’ve just built
here. These models might take into account, for example, the fact
that passengers on a late connecting flight will fail to show up
together non-independently, and that business travelers are more
likely no-shows than families on a vacation.

The binomial model—like all parametric probability models—
cannot incorporate these (very real) effects. It’s just an approxi-
mation. This approximation trades away flexibility for simplicity:
instead of having to specify the probability of all possible out-
comes between 0 and 140, we only have to specify two numbers:
N = 140 and p = 0.09, the parameters of the binomial distribution.
These parameters then determine the probabilities for all events in
the sample space.

In light of this trade-off, any attempt to draw conclusions from
a parametric probability model should also involve the answer to
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two important questions. First, what unrealistic simplifications
have we made in building the model? Second, have these assump-
tions made our model too simple? This second answer will always
be context dependent, and it’s hard to provide general guidelines
about what “too simple” means. Often this boils down to the ques-
tion of what might go wrong if we use a simplified model, rather
than invest the extra work required to build a more complicated
model. This is similar to the trade-off that engineers face when
they build simplified physical models of something like a suspen-
sion bridge or a new fighter jet. Like many things in statistics and
probability modeling, this is a case where there is just no substi-
tute for experience and subject-area knowledge.

The connection with the NP rule

The binomial distribution brings us back to our discussion of the
NP rule, and establishes a connection between the two definitions
we’ve seen so far of expected value:

The simple definition. Suppose we are in a situation with many
repeated exposures (N) to the same chance event that has
probability P of happening. In the long run, the expected
number of events is the frequency of encounters (N), times
the probability of the event in a single encounter (P). Thus
expected value = N × P.

The formal definition. Suppose that the possible outcomes for a ran-
dom variable X are the numbers x1, . . . , xN . Back in Equation
14.1 on page 260, we learned that the formal definition for
the expected value of X is

E(X) =
N

∑
K=1

P(X = xi) · xi .

Thus the expected value is the probability-weighted average
of possible outcomes.

To see the connection between these two definitions, let’s sup-
pose that X is a binomial random variable: X ∼ Binomial(N, P).
If we apply the formal definition of expected value and churn
through the math, we find that

E(X) =
k=N

∑
k=0

(
N
k

)
Pk (1− P)N−k · k

= NP .
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We’ve skipped a lot of algebra steps here, but the punchline is a
lot more important than the derivation: a random variable with a
binomial distribution has expected value E(X) = NP.

This gives us a richer understanding of NP rule for expected
value. The NP rule is a valid way of calculating an expected value
precisely for those random events that can be described by a bino-
mial distribution—that is, those events satisfying criteria (1)-(3) on
page 262. For random events that don’t meet these criteria, you’ll
need to use the formal definition from Equation 14.1 on page 260.

Note: a similar calculation shows that a random variable with a
binomial distribution has standard deviation sd(X) =

√
NP(1− P).

Advanced topic: a derivation of the binomial distribution

To motivate the idea of the binomial distribution, suppose we flip
a fair coin only twice.2 Let our random variable X be the number 2 By fair, we mean that coin is equally

likely to come up heads or tails when
flipped.

of times we see “heads” in two coin flips. Thus our sample space
for X has three possible outcomes—zero, one, or two. Since the
coin flips are independent, all four possible sequences for the
two flips (HH, HT, TH, TT) are equally likely, and the probability
distribution for X is given by the following table:

xk P(X = k) Cases

0 0.25 0 heads (TT)
1 0.50 1 head (HT or TH)
2 0.25 2 heads (HH)

The logic of this simple two-flip case can be extended to the
general case of N flips: by accounting for every possible sequence
of heads and tails that could arise from N flips of a fair coin. Since
successive flips are independent, every sequence of heads and tails
has the same probability: 1/2N . Therefore,

P(X = k heads) =
Number of sequences with k heads
Total number of possible sequences

. (14.3)

There are 2N possible sequences, which gives us the denominator.
To compute the numerator, we must count the number of these
sequences where we see exactly k heads.

How many such sequences are there? To count them, imagine
distributing the k heads among the N flips, like putting k items in
N boxes, or handing out k cupcakes among N people who want
one. Clearly there are N people to which we can assign the first
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cupcake. Once we’ve assigned the first, there are N − 1 people to
which we could assign the second cupcake. Then there are N − 2
choices for the third, and so forth for each successive cupcake.
Finally for the kth and final cupcake, there are N − k + 1 choices.
Hence we count

N × (N − 1)× (N − 2)× · · · × (N − k + 1) =
N!

(N − k)!

possible sequences, where N! is the factorial function. For exam-
ple, if m = 10 and k = 7, this gives 604,800 sequences.

But this is far too many sequences. We have violated an impor-
tant principle of counting here: don’t count the same sequence
more than once. The problem is that have actually counted all
the ordered sequences, even though we were trying to count un-
ordered sequences. For example, in the N = 10, k = 7 case, we
have counted “Heads on flips {1, 2, 3, 4, 5, 6, 7}” and “Heads on
flips {7, 6, 5, 4, 3, 2, 1}” as two different sequences. But they clearly
both correspond to the same sequence: hhhhhhhttt.

So how many times have we overcounted each unordered se-
quence in our tally of the ordered ones? The way to compute this
is to count the number of ways we could order k objects. Given a
group of k numbers which will be assigned to the “heads” cate-
gory, we could have chosen from k of the objects to be first in line,
from k − 1 of them to be second in line, from k − 2 of them to be
third in line, and so forth. This means we have counted each un-
ordered sequence k! times. Thus the correct number of ways we
could choose k objects out of N possiblities is

N!
k!(N − k)!

=

(
N
k

)
.

For N = 10 and k = 7, this is 120 sequences—the right answer, and
a far cry from the 604,800 we counted above.

Putting all these pieces together, we find that the probability of
getting k heads in N flips of a fair coin is

P(k heads) =
N!

k!(N − k)!
1

2N =

(
N
k

)
1

2N . (14.4)

The general case. The above derivation assumes that “yes” (suc-
cess) and “no” (failure) events are equally likely. Let’s now relax
this assumption to see where the general definition of the binomial
distribution comes from, when the probability of any individual
success is not 0.5, but some rather some generic probability p.
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Let’s take a sequence of N trials where we observed k successes.
Each success happens with probability p, and there are k of them.
Each failure happens with probability 1− p, and there are m− k of
them. Because each trial is independent, we multiply all of these
probabilities together to get the probability of the whole sequence:
pk (1− p)m−k. Moreover, our analysis above shows that there are
precisely (N

k ) such sequences (i.e. unique ways of getting exactly k
successes and N − k failures).

So if we let X denote the (random) number of successes in N
trials, then for any value of k from 0 to N,

P(X = k) =
(

N
k

)
pk (1− p)N−k ,

which is the probability mass function given in Equation 14.2.

The Poisson distribution

Our second example of a parametric probability model is the
Poisson distribution, named after the French mathematician
Siméon Denis Poisson.3 The Poisson distribution is used to model 3 The French speakers among you, or at

least the fans of Disney movies, might
recognize the word poisson from a
different context. Run, Sebastian!

the number of times than some event occurs in a pre-specified
interval of time. For example:

(1) How many goals will Arsenal score in their game against Man
U? (The event is a goal, and the interval is a 90-minute game.)

(2) How many couples will arrive for dinner at a hip new restau-
rant between 7 and 8 PM on a Friday night? (The event is the
arrival of a couple asking to sit at a table for two, and the in-
terval is one hour).

(3) How many irate customers will call the 1-800 number for
AT&T customer service in the next minute? (The event is a
phone call that must be answered by someone on staff, and the
interval is one minute.)

In each case, we identify the random variable X as the total
number of events that occur in the given interval. The Poisson dis-
tribution will provide an appropriate description for this random
variable if the following criteria are met:

(1) The events occur independently; seeing one event neither
increases nor decreases the probability that a subsequent event
will occur.

https://en.wikipedia.org/wiki/Sim�on_Denis_Poisson
https://www.youtube.com/watch?v=EcyhVHrmlMU
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(2) Events occur the same average rate throughout the time inter-
val. That is, there is no specific sub-interval where events are
more likely to happen than in other sub-intervals. For exam-
ple, this would mean that if the probability of Arsenal scoring
a goal in a given 1-minute stretch of the game is 2%, then the
probability of a goal during any 1-minute stretch is 2%.

(3) The chance of an event occuring in some sub-interval is pro-
portional to the length of that sub-interval. For example, this
would mean that if the probability of Arsenal scoring a goal in
any given 1-minute stretch of the game is 2%, then the proba-
bility that they score during a 2-minute stretch is 4%.

A random variable X meeting these criteria is said to follow a
Poisson distribution. The sample space of a Poisson distribution
is the set of non-negative integers 0, 1, 2, etc. This is one important
way in which the Poisson differs from the binomial. A binomial
random variable cannot exceed N, the number of trials. But there
is no fixed upper bound to a Poisson random variable.

The probability mass function of Poisson distribution takes the
following form:

P(X = k) =
λk

k!
e−λ ,

with a single parameter λ (called the rate). This parameter governs
the average number of events in the interval: E(X) = λ. It also
governs the standard deviation: sd(X) =

√
λ.

Example: modeling the score in a soccer game. Let’s return to our
soccer game example. Across all games in the 2015-16 English
Premiere League (widely considered to be the best professional
soccer league in the world), Arsenal scored 1.6 goals per game,
while Manchester United scored 1.3 goals per game. How likely
is it that Arsenal beats Man U? How likely is a scoreless draw
at 0-0? To answer these questions, let’s make some simplifying
assumptions.

(1) Let XA be the number of goals scored in a game by Arsenal.
We will assume that XA can be a described by a Poisson distri-
bution with rate parameter 1.6: that is, XA ∼ Poisson(λ = 1.6).

(2) Let XM be the number of goals scored in a game by Manch-
ester United. We will assume that XM ∼ Poisson(λ = 1.3).
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Figure 14.3: A matrix of probabilities
associated with various match scores
under the independent Poisson model
of an Arsenal vs. Man U match, based
on scoring statistics from 2015-16

Premiere League season. Each entry
in the matrix is the probability with
the corresponding score (darker grey =
higher probability). The cells outlined
in blue correspond to an Arsenal win,
which happens with probability 44%
(versus 25% for a draw and 31% for a
Manchester United win.

(3) Finally, we will assume that XA and XM are independent of
one another.

Our model sets the rate parameters for each team’s Poisson distri-
bution to match their average scoring rates across the season. The
corresponding PMFs are shown at right.
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Under these simplifying assumptions, we can calculate the
probability of any possible score—for example, Arsenal 2–0

Manchester United. Because we have assumed that XA and XM

are independent, we can multiply together the two probabilities
we get from each random variable’s Poisson distribution:

P(XA = 2, XM = 0) =
(

1.62

2!
e−1.6

)
·
(

1.30

0!
e−1.3

)
≈ 0.07 .

Figure 14.3 shows a similar calculation for all scores ranging
from 0–0 to 5–5 (according to the model, the chance of a score
larger than this is only 0.6%). By summing up the probabilities for
the various score combinations, we find that:

• Arsenal wins with probability 44%.

• Man U wins with probability 31%.
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• The game ends in a draw with probability 25%. In particular,
a scintillating 0–0 draw happens with probability 5.5%.

The normal distribution

This chapter’s third and final example of a parametric probability
model is the normal distribution—the most famous and widely
used distribution in the world.

Some history

Historically, the normal distribution arose an an approximation
to the binomial distribution. In 1711, a Frenchman named Abra-
ham de Moivre published a book called The Doctrine of Chances.
The book was reportedly was prized by gamblers of the day for its
many useful calculations that arose in dice and card games. In the
course of writing about these games, de Moivre found it necessary
to perform computations using the binomial distribution for very
large values of N, the number of independent trial in a binomial
distribution. (Imagine flipping a large number of coins and mak-
ing bets on the outcomes, and you too will see the necessity of this
seemingly esoteric piece of mathematics.)

Figure 14.4: The title page of de
Moivre’s “The Doctrine of Chances”
(1711), from an early edition owned by
the University of California, Berkeley.
One interesting thing about the history
of statistics is the extent to which beau-
tiful mathematical results came out of
the study of seemingly trivial gambling
and parlor games.

As you recall the previous section, these calculations require
computing binomial coefficients (N

k ) for very large values of N.
But because these computations involve the factorial function,
they were far too time-consuming without modern computers,
which de Moivre didn’t have. So he derived an approximation
based on the number e ≈ 2.7183, the base of the natural loga-
rithm. He discovered that, if a random variable X has a binomial
distribution with parameters N and p, which we recall is written
X ∼ Binomial(N, p), then the approximate probability that X = k
is

P(X = k) ≈ 1√
2πσ2

e−
(k−µ)2

2σ2 , (14.5)

where µ = mp and σ2 = Np(1− p) are the expected value and
variance, respectively, of the binomial distribution. When consid-
ered as a function k, this results in the familiar bell-shaped curve
plotted in Figure 14.5—the famous normal distribution.

We can usually (though not always) avoid working with this
expression directly, since every piece of statistical software out
there can compute probabilities under the normal distribution.
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Figure 14.5: The binomial distribution
for p = 0.5 and an increasingly large
number of trials, together with de
Moivre’s normal approximation.

The important thing to notice is how the binomial samples in
Figure 14.5 start to look more normal as the number of trials N
gets progressively larger: first 5, then 10, 25, and finally 100. The
histograms show the binomial distribution itself, while the black
curves show de Moivre’s approximation. Clearly he was on to
something. This famous result of de Moivre’s is usually thought of
as the first central limit theorem in the history of statistics, where the
word “central” should be understood to mean “fundamental.”

The normal distribution: a modern understanding

The other term for the normal distribution is the Gaussian distri-
bution, named after the German mathematician Carl Gauss. This
raises a puzzling question. If de Moivre invented the normal ap-
proximation to the binomial distribution in 1711, and Gauss (1777–
1855) did his work on statistics almost a century after de Moivre,
why then is the normal distribution also named after Gauss and
not de Moivre? This quirk of eponymy arises because de Moivre
only viewed his approximation as a narrow mathematical tool
for performing calculations using the binomial distribution. He
gave no indication that he saw it as a more widely applicable
probability distribution for describing random phenomena. But
Gauss—together with another mathematician around the same
time, named Laplace—did see this, and much more.

If we want to use the normal distribution to describe our un-
certainty about some random variable X, we write X ∼ N(µ, σ2).
The numbers µ and σ2 are parameters of the distribution. The first
parameter, µ, describes where X tends to be centered; it also hap-
pens to be the expected value of the random variable. The second
parameter, σ2, describes how spread out X tends to be around its
expected value; it also happens to be the variance of the random
variable. Together, µ and σ2 completely describe the distribution,
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Figure 14.6: Three members of the
normal family: N(0, 12), N(0, 42), and
N(3, 12). See if you can identify which
is which using the guideline that 95%
of the probability will be within two
standard deviations σ of the mean.
Remember, the second parameter is the
variance σ2, not the standard deviation.
So σ2 = 42 means a variance of 16 and a
standard deviation of 4.

and therefore completely characterize our uncertainty about X.
The normal distribution is described mathematically by its

probability density function, or PDF:

p(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (14.6)

If you plot this as a function of x, you get the famous bell curve
(Figure 14.6). How can you interpret a “density function” like this
one? If you the take the area under this curve between two values
z1 and z2, you will get the probability that the random variable
X will end up falling between z1 and z2 (see Figure 14.7). The
height of the curve itself is a little more difficult to interpret, and
we won’t worry about doing so—just focus on the “area under the
curve” interpretation.

−3 −2 −1 0 1 2 3

●

●

Lower Tail Area = 0.1
Upper Tail Area = 0.05

Figure 14.7: Examples of upper and
lower tail areas. The lower tail area of
0.1 is at z = −1.28. The upper tail area
of 0.05 is at z = 1.64

Here are two useful facts about normal random variables
areas—or more specifically, about the central areas under the
curve, between the tails. If X ∼ N(µ, σ2), then the chance that
X will be within 1σ of its mean is about 68%, and the chance that
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it will be within 2σ of its mean is about 95%. Said in equations:

P(µ− 1σ < X < µ + 1σ) ≈ 0.68

P(µ− 2σ < X < µ + 2σ) ≈ 0.95 .

Actually, it’s more like 1.96σ rather than 2σ for the second part. So
if your problem requires a level of precision to an order of 0.04σ

or less, then don’t use this rule of thumb, and instead go with the
true multiple of 1.96.

When is the normal distribution an appropriate model?

The normal distribution is now used as a probability model in sit-
uations far more diverse than de Moivre, Gauss, or Laplace ever
would have envisioned. But it still bears the unmistakeable traces
of its genesis as a large-sample approximation to the binomial dis-
tribution. That is, it tends to work best for describing situations
where each normally distributed random variable can be thought
of as the sum of many tiny, independent effects of about the same
size, some positive and some negative. In cases where this descrip-
tion doesn’t apply, the normal distribution may be a poor model
of reality. Said another way: the normal distribution describes an
aggregation of nudges: some up, some down, but all pretty small.

As a result, the normal distribution shares the property of the
binomial distribution that huge deviations from the mean are
unlikely. It has, in statistical parlance, “thin tails.” Using our rule
of thumb above, a normally distributed random variable has only
a 5% chance of being more than two standard deviations away
from the mean. It also has less than a 0.3% chance of being more
than three standard deviations away from the mean. Large outliers
are vanishingly rare.

For example, in the histogram of daily returns for Microsoft
stock in the left panel Figure 14.8, notice the huge outliers in the
lower tail. These returns would be wildly implausible if the re-
turns really followed a normal distribution. A daily return tends
to be dominated by one or two major pieces of information. It
does not resemble an aggregation of many independent up-or-
down nudges, and so from first principles alone, we should prob-
ably expect the normal distribution to provide a poor fit. As we
would expect, the best-fitting normal approximation (i.e. the one
that matches the sample mean and standard deviation of the data)
does not fit especially well.



probability distributions 275

Microsoft daily returns (2014−15) 
with best−fitting normal approximation

Daily return

D
en

si
ty

−0.10 −0.05 0.00 0.05 0.10

0
5

10
15
20
25
30
35

S&P 500 monthly returns (1988−2015) 
with best−fitting normal approximation

Monthly return

D
en

si
ty

−0.15 −0.05 0.05 0.10 0.15

0
2
4
6
8

10
12
14

Figure 14.8: Daily stock returns for
Microsoft (left) and the S&P 500 (right),
together with the best-fitting normal
approximations. The approximation
on the right is not bad, while the
approximation on the left drastically
underestimates the probability of
extreme results.

The example of Microsoft stock recalls the earlier discussion on
the trustworthiness of the simplifying assumptions that must go
into building a probability model. To recap:

Have these assumptions made our model too simple? This . . . an-
swer will always be context dependent, and it’s hard to pro-
vide general guidelines about what “too simple” means.
Often this boils down to the questin of what might go wrong
if we use a simplified model, rather than invest the extra work
required to build a more complicated model.

What might go wrong if we use a normal probability model for
Microsoft returns? In light of what we’ve seen here, the answer
is: we might be very unpleasantly surprised by monetary losses
that are far more extreme than envisioned under our model. This
sounds very bad, and is probably a sufficient reason not to use
the normal model in the first place. To make this precise, observe
that the 2 most extreme daily returns for Microsoft stock were both
6 standard deviations below the mean. According to the normal
model, we should only expect to see such an extreme result once
every billion trading days, since

P(X < µ− 6σ) ≈ 10−9 .

This is a wildly overtoptimistic assessment, given that we actually
saw two such results in the 503 trading days from 2014-15.
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On the other hand, the normal distribution works a lot better
for stock indices than it does for individual stocks, especially if
we aggregate those returns over a month rather than only a day,
so that the daily swings tend to average out a bit more. Take, for
example, the best-fitting normal approximation for the monthly
returns of the S&P 500 stock index from 1988 to 2015, in the right
panel of Figure 14.8. Here the best-fitting normal distribution,
though imperfect, looks a lot better than the corresponding fit for
an individual stock on the left. Here, the most extreme monthly
return was 4 standard deviations below the mean (which hap-
pened in October 2008, during the financial crisis of that year that
augured the Great Recession). According to the normal model,
we would expect such an extreme event to happen with about 2%
probability in any given 27-year stretch. Thus our model looks a
tad optimistic, but not wildly so.

Example: modeling a retirement portfolio

From 1900–2015, the average annual return4 of the S&P 500 stock 4 Real returns net of infation and
dividends. Remember that a return is
simply the implied interest rate from
holding an asset for a specified period.
If you buy a stock at $100 and sell a
year later at $110, then your return
is (110− 100)/100 = 0.1, or 10%. If
inflation over that year was 3%, then
your real return was 7%.

index is 6.5%, with a standard deviation of 19.6%. Let’s use these
facts to build a probability model for the future 40-year per-
formance of a $10,000 investment in a diversified portfolio of
U.S. stocks (i.e. an index fund). While there’s no guarantee that
past returns are a reliable guide to future returns, they’re the only
data we have. After all, as Mark Twain is reputed to have said,
“History doesn’t repeat itself, but it does rhyme.”

Let’s say that your initial investment is W0 = $10, 000, and that
Xt is the return of your portfolio in year t expressed as a decimal
fraction (e.g. a 10% return in year 1 would mean that Xt = 0.1).
Here t will run from 1 to 40, since we want to track your portfolio
over 40 years. If we knew the returns X1, X2, . . . , X40 all the way
into the future, we could calculate your terminal wealth as

W40 = W0 ·
40

∏
t=1

(1 + Xt) ,

by simply compounding the interest year after year.5 This formula 5 Here the symbol ∏ means we take the
running product of all the terms, from
t = 1 to t = 40, just like Σ means we
take a running sum.

follows from the fact that Wt+1, your wealth in year t, is given by
the simple interest formula: Wt+1 = Wt · (1 + Xt). Accumulating
returns year after year then gives us the above formula.

Of course, we don’t know these interest rates. But we do have a
probability model for them, whose parameters have been chosen
to match the historical record: Xt ∼ N(µ = 0.065, σ2 = 0.1962).
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Figure 14.9: Left panel: 1000 simulated
trajectories for the growth of a $10,000

stock investment over 40 years, assum-
ing that year stock returns are normally
distributed with a mean of 6.5% and
a standard deviation of 19.6%. Two
individual trajectories (leading to very
different outcomes) are highlighted in
blue; the average trajectory is shown in
red. The right panel shows the simu-
lated probability distribution for W40,
the final value of the portfolio after 40

years of random returns.

Thus to estimate the probability distribution of the random vari-
able W40, your terminal wealth after 40 years, we will use a Monte
Carlo simulation, in which we repeat the following steps many
thousands of times:

(1) Simulate random returns from the normal probability model:
Xt ∼ N(0.065, 0.1962) for t = 1, . . . , 40.

(2) Starting with year t = 1 and ending with year t = 40,
chain these simulated interest rates together using the simple-
interest formula

Wt+1 = Wt · (1 + Xt)

to form a single simulated trajectory W1, W2, . . . , W40 of wealth.

As a byproduct of this, we get a simulated probability distribution
of Wt for all values of t from 1 up to 40.

Figure 14.9 shows 1000 trajectories simulated according to this
algorithm, along with the histogram of the 1000 different values of
W40, your wealth in 40 years. There are several interesting things
to point out about the result:

(1) The average trajectory in Figure 14.9 results in a final value of
W40 ≈ $135,000 from your initial $10,000 investment.6

6 Remember that our assumed rates of
return are adjusted for inflation, so this
corresponds to the purchasing power
of $135,000 in today’s money. The
actual dollar value of this portfolio, as
measured in the currency of the future,
would be a good deal higher.

(2) But there is tremendous variability about this average trajec-
tory, both over time for a single trajectory, and across all tra-
jectories. To illustrate this point, two simulated trajectories are
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shown in blue in Figure 14.9: one resulting in a final portfolio
of about $250,000, and another resulting in less than $50,000.

(3) The simulated probability distribution of final wealth (right
panel of Figure 14.9) was constructed using nothing but nor-
mally distributed random variables as inputs. But this dis-
tribution is itself highly non-normal.7 This provides a good 7 In particular it has a long right tail,

reflecting the small probability of
explosive growth in your investment.

example of using Monte Carlo simulation to simulate a com-
plex probability distribution by breaking down into a function
of many smaller, simpler parts (in this case, the yearly returns).

(4) The estimated probability that your $10,000 investment will
have lost money (net of inflation) after 10 years is about 19%;
after 20 years, about 13%; after 40 years, about 6%.

(5) The estimated probability that your investment will grow to $1

million or more after 40 years is about 1%.

The moral of the story is that the stock market is probably a
good way to get rich over time. But there’s a nonzero chance of
losing money—and the riches come only in the long run, and with
a lot of uncertainty about how things will unfold along the way.

Postscript

We’ve now seen three examples of parametric probability mod-
els: a binomial model for airline no-shows, a Poisson model for
scoring in a soccer game, and a normal model for annual returns
of the stock market. In each case, we chose the parameters of the
probability model from real-world data, using simple and obvious
criteria (e.g. the overall no-show rate for commercial flights, or the
mean return of stocks over the last century).8 In essence, we per- 8 Technically what we did here was

called moment matching, wherein we
match sample moments (e.g. mean,
variance) of the data to the corre-
sponding moments of the probability
distribution.

formed a naïve form of statistical inference for the parameters of
our probability models. This intersection where probability mod-
eling meets data is an exciting place where the big themes of the
book all come together.



15
Correlated random variables

Joint distributions for discrete variables

In this chapter, we study probability distributions for coupled sets
of random variables. We’ll first work through a simple example
involving two discrete random variables. This will allow us to
introduce some basic concepts before turning to more complex
examples.

A simple example

The key concept in this chapter is that of a joint distribution. We
recall that a joint distribution is a list of joint outcomes for two
or more variables at once, together with the joint probabilities for
each of these outcomes.

Let’s look at a simple example, regarding the number of bed-
rooms and bathrooms for houses and condos currently up for sale
in Austin, Texas. Let Xbe be the number of bedrooms that a house
has, and let Xba be the number of bathrooms. The following ma-
trix of joint probabilities specifies a joint probability distribution
P(Xba, Xbe):

Bathrooms
Bedrooms 1 2 3 4 Marginal

1 0.003 0.001 0.000 0.000 0.004

2 0.068 0.113 0.020 0.000 0.201

3 0.098 0.249 0.126 0.004 0.477

4 0.015 0.068 0.185 0.015 0.283

5 0.002 0.005 0.017 0.006 0.030

6 0.001 0.001 0.002 0.001 0.005

Marginal 0.187 0.437 0.350 0.026

Using the marginal probabilities alone, we can straightfor-
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wardly calculate the expected value and variance for the number
of bedrooms and bathrooms. We’ll explicitly show the calculation
for the expected number of bathrooms, and leave the rest as an
exercise to be verified:

E(Xba) = 0.187 · 1 + 0.437 · 2 + 0.350 · 3 + 0.026 · 4
= 2.215

var(Xba) = 0.595

E(Xbe) = 3.149

var(Xbe) = 0.643

Covariance

But these moments only tell us about the two variables in isola-
tion, rather than the way they vary together. When two or more
variables are in play, the mean and the variance of each one are no
longer sufficient to understand what’s going on. In this sense, a
quantitative relationship is much like a human relationship: you
can’t describe one by simply listing off facts about the characters
involved. You may know that Homer likes donuts, works at the
Springfield Nuclear Power Plant, and is fundamentally decent
despite being crude, obese, and incompetent. Likewise, you may
know that Marge wears her hair in a beehive, despises the Itchy
and Scratchy Show, and takes an active interest in the local schools.
Yet these facts alone tell you little about their marriage. A quanti-
tative relationship is the same way: if you ignore the interactions
of the “characters,” or individual variables involved, then you will
miss the best part of the story.

To quantify the strength of association between two variables,
we will calculate their covariance. The general definition of co-
variance is as follows. Suppose that there are N possible joint
outcomes for X and Y. Then

cov(X, Y) = E
{
[X−E(X)][Y−E(Y)]

}
=

n

∑
i=1

pi
[
xi−E(X)

][
yi−E(Y)

]
.

This sum is over all possible combinations of joint outcomes for
X and Y. In our example about houses for sale, there are 24 terms
in the sum, because there are 24 unique combinations for Xbe and
Xba. In the following calculation, a handful of these terms are
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shown explicitly, with most shown as ellipses:

cov(Xba, Xbe) = 0.003 · (1− 2.215)(1− 3.149)

+ 0.068 · (1− 2.215)(2− 3.149)

+ · · ·
+ 0.185 · (3− 2.215)(4− 3.149)

+ · · ·
+ 0.005 · (4− 2.215)(6− 3.149)

≈ 0.285 .

In this summation, some of the terms are positive and sum of
the terms are negative. The positive terms correspond to joint out-
comes when the number of bedrooms and bathrooms are on the
same side of their respective means—that is, both above the mean,
or both below it. The negative terms, on the other hand, corre-
spond to outcomes where the two quantities are on opposite sides of
their respective means. In this case, the “same side” outcomes are
more likely than the “opposite side” outcomes, and therefore the
covariance is positive.

Correlation as standardized covariance

One difficulty that arises in interpreting covariance is that it de-
pends upon the scale of measurement for the two sets of observa-
tions. This isn’t so objectionable in the above example (it’s hard to
imagine what other units we would use). Nonetheless, it’s nice to
have a unit-free measure of association—especially for a variable
like distance, which we could measure in miles or millimeters.

One such scale-invariant measure is the correlation between two
random variables, which is analogous to the concept of sample
correlation between two variables in a data set. The correlation co-
efficient for two random variables X and Y is just their covariance,
rescaled by their respective standard deviations:

cor(X, Y) =
cov(X, Y)√

var(X) ·
√

var(Y)
.

It runs from -1 (perfect negative correlation) to +1 (perfect positive
correlation).

Let’s apply this definition to calculation the correlation between
the number of bedrooms (Xbe) and number of bathrooms (Xba)
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under the joint distribution given earlier:

cor(Xba, Xbe) =
0.285√

0.595 ·
√

0.643
≈ 0.745 .

The bivariate normal distribution

Heredity and regression to the mean

The history of statistics is intertwined with the history of how sci-
entists came to understand heredity. How strongly do the features
of one generation manifest themselves in the next generation?
What governs this process, and how can we quantify it mathe-
matically? These questions fascinated scientists of the late 19th
and early 20th centuries. As they grappled with them, they also
invented a lot of new statistical tools.1

1 It’s important to mention that many
these developments were pursued at
least partially in the name of the eugen-
ics movement. While the mathematical
tools left to us as a result of these stud-
ies remain valuable, their history is not
something to be unreservedly proud
of. If you’re interested in reading more
about this, try the following article: “Sir
Francis Galton and the birth of eugen-
ics,” by N.W. Gilham. Annual Review
of Genetics, 2001, 35:83-101.One famous study of heredity, by Francis Galton in the 1880’s,

resulted in the data similar to what you see in the left panel of
Figure 15.1.2 As part of Galton’s study of heredity, he collected

2 This data was actually collected an
analyzed by Galton’s protégé, Karl
Pearson. But Galton worked with very
similar data, so we’ll pretend for the
purposes of exposition that this was
Galton’s data, since he was the first one
to follow this line of thought.

data on the adult height of parent–child pairs. He wanted to quan-
tify mathematically the extent to which height was inherited from
one generation to the next. In looking into this question, Galton
noticed some interesting facts about his data.

• Consider the 20 tallest fathers in the data set, highlighted in
blue in Figure 15.1. These 20 men had a mean height that
was about 6.2 inches above their generation’s average height.
But the sons of these 20 men had an average height that was
only 2.8 inches above their generation’s average height. Thus
the sons of very tall men were taller than average, but not by
as much as their fathers were.

• Now consider the 20 shortest fathers in the data set, high-
lighted in red in Figure 15.1. These 20 men had a mean
height that was about 6.9 inches below their generation’s
average height. But the sons of these 20 men had an average
height that was only 3.3 inches below their generation’s av-
erage height. Thus the sons of very short men were shorter
than average, but not by as much as their fathers were.

Galton called this phenomenon “regression towards medi-
ocrity,” where “mediocre” should be understood in the sense of
“average.” Galton’s proposed explanation for this phenomenon
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Figure 15.1: Karl Pearson’s data on
the height of fathers and their adult
sons. The 20 tallest fathers (and their
sons) are highlighted in blue, with the
bivariate mean of this group shown
as a blue X. Similarly, the 20 shortest
fathers (and their sons) are highlighted
in red, with the bivariate mean of
this group shown as a red X. The
points show fathers and sons only, to
avoid any confounding due to sex.
We’ve also mean-centered the data,
by subtracting the average height of
all fathers from each father’s height,
and the average height of all sons from
each son’s height. This doesn’t change
the shape of the point cloud; it merely
re-centers it at (0, 0). This accounts for
the fact that the sons’ generation, on
average, was about an inch taller than
the fathers’ generation—possibly due
to improving standards of health and
nutrition.

turned out to be incorrect, but today we understand it as a product
of genetics. It’s hard to explain exactly why this happens without
getting deep into the weeds on multifactorial inheritance, but the
rough idea is the following. (We’ll focus on the tallest fathers in
the data set, but the same line of reasoning works for the shortest
fathers, too.)

Figure 15.2: Yao Ming makes J.J. Watt
(6’5" tall, 290 pounds) look like a child.

• Very tall people, like Yao Ming at right, turn out that way for
a combination of two reasons: height genes and height luck.
(Here “luck” is used to encompass both environmental forces
as well as some details of multifactorial inheritance not worth
going into here.)

• Therefore, our selected group of very tall people (the blue
dots in Figure 15.1) is biased in two ways: extreme height
genes and extreme height luck.

• These very tall people pass on their height genes to their
children, but not their height luck.

• Height luck will average out in the next generation. There-
fore, the children of very tall parents will still be tall (be-
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cause of genes), but not as tell as their parents (because they
weren’t as lucky, on average).

Notice that this isn’t a claim about causality. It is not true that
the children of very tall people are likely to have less extreme
“height luck” because their parents had a lot of it. Rather, these
children are likely to have less luck than their parents because
extreme luck is, by definition, rare—and they are no more likely to
experience this luck than any randomly selected group of people.

This phenomenon that we’ve observed about height and hered-
ity is actually quite general. Take any pair of correlated measure-
ments. If one measurement is extreme, then the other measure-
ment will tend to be closer to the average. Today we call this re-
gression to the mean. Just as Galton did in 1889, we can make this
idea mathematically precise using a probability model called the
bivariate normal distribution. This requires a short detour.

Notation for the bivariate normal

The bivariate normal distribution a parametric probability model
for the joint distribution of two correlated random variables X1

and X2. You’ll recall that the ordinary normal distribution is a
distribution for one variable with two parameters: a mean and a
variance. The bivariate normal distribution is for two variables (X1

and X2), and it has five parameters:

• The mean and variance of the first random variable: µ1 =

E(X1) and σ2
1 = var(X1).

• The mean and variance of the second random variable: µ2 =

E(X2) and σ2
2 = var(X2).

• The covariance between X1 and X2, which we denote as σ12.

Equivalently, we can specify the correlation instead of the covari-
ance. We recall that the correlation is just the covariance rescaled
by both standard deviations:

ρ =
cov(X1, X2)

sd(X1) · sd(X2)
=

σ12

σ1 · σ2
.

In practice will usually instead refer to the standard deviations σ1

and σ2 and correlation ρ rather than the variances and covariances,
and use the shorthand (X1, X2) ∼ N(µ1, µ2, σ1, σ2, ρ).
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Figure 15.3: 24 examples of a bivariate
normal distribution (250 samples in
each plot).
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We can also write a bivariate normal distribution using matrix–
vector notation, to emphasize the fact that X = (X1, X2) is a ran-
dom vector: (

X1

X2

)
∼ N

([
µ1

µ2

]
,

[
σ2

1 σ12

σ12 σ2
2

])
,

or simply X ∼ N(µ, Σ), where µ is the mean vector and Σ is called
the covariance matrix.

The bivariate normal distribution has the nice property that
each of its two marginal distributions are ordinary normal distri-
butions. That is, if we ignore X2 and look only at X1, we find that
X1 ∼ N(µ1, σ2

1 ). Similarly, if we ignore X1 and look only at X2, we
find that X2 ∼ N(µ2, σ2

2 ).

Visualizing the bivariate normal distribution

Figure 15.3 provides some intuition for how the various parame-
ters of the bivariate normal distribution affect its shape. Here we
see 24 examples of a bivariate normal distribution with different
combinations of standard deviations and correlations. In each
panel, 250 random samples of (X1, X2) from the corresponding
bivariate normal distribution are shown:

• Moving down the rows from top to bottom, the standard
deviations of the two variables change, while the correlation
remains constant within a column.

• Moving across the columns from left to right, the correla-
tion changes from negative to positive, while the standard
deviations of the two variables remain the same within a row.

The mean of both variables is 0 in all 24 panels. Changing ei-
ther mean would translate the point cloud so that it was centered
somewhere else, but would not change the shape of the cloud.

Each panel of Figure 15.3 also shows a contour plot of the prob-
ability density function for the corresponding bivariate normal
distribution, overlaid in grey. We read these contours in a manner
similar to how we would on an ordinary contour map: they tell us
how high we are on the three-dimensional surface of the bivariate
normal density function, like the one shown at right.

X1

X2

Bivariate norm
al density

σ1 = 1, σ2 = 1.5, ρ = 0.5

Figure 15.4: A three-dimensional wire-
frame plot of a bivariate normal density
function.

To interpret this density function, imagine specifying two in-
tervals, one for X1 and another for X2, and asking: what is the
probability that both X1 and X2 fall in their respective intervals?

https://en.wikipedia.org/wiki/Contour_line
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Figure 15.5: Best-fitting bivariate nor-
mal distribution for Karl Pearson’s
height data based on the sample stan-
dard deviations and sample correlation.

Written mathematically, we want to know the joint probability
P[X1 ∈ (a, b), X2 ∈ (c, d)]. The two intervals (a, b) and (c, d) define
a rectangle in the (X1, X2) plane (i.e. the “floor” of the 3D plot in
Figure 15.4). To calculate this joint probability, we ask: what is the
volume under the density function that sits above this rectangle?
This generalizes the “area under the curve” interpretation of a
density function for a single random variable.

Figure 15.5 shows the best fitting bivariate normal distribution
to the heights data:

(X1, X2) ∼ N(µ1 = 0, µ2 = 0, σ1 = 2.75, σ2 = 2.82, ρ = 0.5) .

Remember that both means are zero because we centered the data.

Conditional distributions for the bivariate normal

Take any pair of correlated random variables X1 and X2. Because
they are correlated, the value of one variable gives us informa-
tion about the value of the second variable. To make this precise,
say we fix the value of X1 at some known value x1. What is the
conditional probability distribution of X2, given that X1 = x1? In
our heights example, this would be like asking: what is the dis-
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Figure 15.6: Left: father–son pairs
where the father’s height is about 2

inches above average are highlighted
in purple. Right: the histogram of
the sons’ height, together with the
conditional distribution P(X2 | X1 = 2)
predicted by the bivariate normal fit to
the joint distribution for (X1, X2). The
sons’ average height, E(X2 | X1 = 2)
(purple line) is shrunk back towards
0 compared to the fathers’ height of
2 inches above average (black dotted
line). This illustrates regression to the
mean.

tribution for the heights of sons (X2) for fathers whose height is 2

inches above the mean (X1 = 2)?
If X1 and X2 follow a bivariate normal distribution, i.e.

(X1, X2) ∼ N(µ1, µ2, σ1, σ2, ρ) ,

then this question is easy to answer. It turns out that the condi-
tional probability distribution P(X2 | X1 = x1) is an ordinary
normal distribution, with mean and variance

E(X2 | X1 = x1) = µ2 + ρ · σ2

σ1
· (x1 − µ1) (15.1)

var(X2 | X1 = x1) = σ2
2 · (1− ρ2) , (15.2)

where σ1, σ2, and ρ are the standard deviations of the two vari-
ables and their correlation, respectively. You’ll notice that the
conditional mean E(X2 | X1 = x1) is a linear function of x1, the
assumed value for X1. Galton called this the regression line—that
is, the line that describes where we should expect to find X2 for a
given value of X1.3

3 This use of the term “regression”
is the origin of the phrase “linear
regression” to describe the process of
fitting lines to data. But keep in mind
that linear regression (in the sense
of fitting equations to data) actually
predates Galton’s use of the term by
almost 100 years. So while Galton’s
reasoning using the bivariate normal
distribution does provide the historical
underpinnings for the term regression
in the sense that we used it earlier in
the book, it is not the origin for the idea
of curve fitting.

This fact brings us straight back to the concept of regression to
the mean. Let’s re-arrange Equation 15.1 to re-express the condi-
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tional mean in a slightly different way:

E(X2 | X1 = x1)− µ2

σ2
= ρ ·

(
x1 − µ1

σ1

)
. (15.3)

The left-hand side asks: how many standard deviations is X2 ex-
pected to be above (or below) its mean, given that X1 = x1? The
right-hand side answers: the number of standard deviations that
x1 was above (or below) its mean, discounted by a factor of ρ. Be-
cause ρ can never exceed 1, we expect that X2 will be “shrunk” a
bit closer to its mean than x1 was—and the weaker the correlation
between the two variables, the stronger this shrinkage effect is.
Equation 15.3 therefore provides a formal mathematical descrip-
tion of regression to the mean. In the extreme case of ρ = 1, there
is no regression to the mean at all.

Let’s return to the data on the heights of fathers and sons and
use this result to measure the magnitude of the regression-to-mean
effect. Specifically, let’s consider fathers whose heights are about 2

inches above average (X1 = 2). Using Equation 15.1 together with
the parameters of the best-fitting bivariate normal distribution
from Figure 15.5, we find that:

E(X2 | X1 = 2) = ρ · σ2

σ1
· 2 = 0.5 · 2.81

2.75
· 2 ≈ 1.03 .

That is, the sons should be about 1 inch taller than average for
their generation (rather than 2 inches taller, as their fathers were).

Sure enough, as Figure 15.6 shows, this prediction is borne out.
We have highlight all the fathers in the data set who are approxi-
mately inches above average (purple dots, left panel). On the right,
we see a histogram for the height of their sons. This histogram
shows us the conditional distribution P(X2 | X1 = 2), together
with the normal distribution whose mean and variance are calcu-
lated using the formulas for the conditional mean and variance
in Equations 15.1 and 15.2. Given the small sample size (n = 59),
the normal distribution looks like a good fit—in particularly, it
captures the regression-to-the-mean effect, correctly predicting that
the conditional distribution will be centered around X2 = 1.
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Further applications of the bivariate normal

Example 1: regression to the mean in baseball

Regression to the mean is ubiquitous in professional sports. If
you’re a baseball fan, you may have heard of the “sophomore
jinx”:

A sophomore jinx is the popularly held belief that after a
successful rookie season, a player in his second year will be
jinxed and not have the same success. Most players suffer the
“sophomore jinx” as scouting reports on the former rookie
are now available and his weaknesses are known around the
league.4 4 http://www.baseball-reference.

com/bullpen/Sophomore_jinx

This idea comes up all the time in discussion among baseball
players, coaches, and journalists:

Fresh off one of their best seasons in decades, the Cubs look
primed to compete for a division title and more in 2016. As
rookies in 2015, Kris Bryant, Addison Russell, Jorge Soler and
Kyle Schwarber had significant roles in the success and next
year, Cubs manager Joe Maddon is looking to help them avoid
the dreaded sophomore jinx. “I think the sophomore jinx is
all about the other team adjusting to you and then you don’t
adjust back,” Maddon said Tuesday at the Winter Meetings.
“So the point would be that we need to be prepared to adjust
back. I think that’s my definition of the sophomore jinx.”5 5 “Focus for Joe Maddon: Avoiding

‘sophomore jinx’ with young Cubs.”
Matt Snyder, CBSsports.com, December
8, 2015.

The sophomore jinx—that outstanding rookies tend not to do
quite as well in their second seasons—is indeed real. But it can be
explained in terms of regression to the mean! Recall our definition
of this phenomenon, from several pages ago: “Take any pair of
correlated measurements. If one measurement is extreme, then the
other measurement will tend to be closer to the average.”

Let’s apply this idea to baseball data. Say that X1 is batting
average of a baseball player last season, and that X2 is that same
player’s batting average this season. Surely these variables are
correlated, because more skillful players will have higher aver-
ages overall. But the correlation will be imperfect (less than one),
because luck plays a role in a player’s batting average, too.

Now focus on the players with the very best batting averages
last year—that is, those where X1 is the most extreme. Among
players in this group, we should expect that X2 will be less ex-
treme overall than X1. Again, this isn’t a claim about good perfor-
mance last year causing worse performance this year. It’s just that

http://www.baseball-reference.com/bullpen/Sophomore_jinx
http://www.baseball-reference.com/bullpen/Sophomore_jinx
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Regression to the mean in repeated measurements: 
2014 and 2015 baseball batting averages
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Figure 15.7: Baseball batting averages
in the 2014 and 2015 seasons for all
players with at least 100 at-bats in both
years.

last year’s very best performers were both lucky and good—and
while they might still be good this year, they are no more likely to
be lucky than any other group of baseball players.6 6 Although it’s possible Joe Maddon’s

theory of “not adjusting back” might be
partially true, too, the mere existence
of the “sophomore jinx” phenomenon
certainly doesn’t prove it.

Figure 15.7 shows this phenomenon in action. Here we see the
batting averages across the 2014 and 2015 baseball seasons for
all players with at least 100 at-bats in both seasons. The figure
highlights some of the very best and very worst performers in
2014. Sure enough, although 2014’s best were still good in 2015,
they weren’t as good as they had been the previous year. Similarly,
the very worst performers in 2014 were still not very good in 2015,
but they weren’t as bad as they’d been the previous year. This is
another great example of regression to the mean.
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Monthly returns of stocks and treasury bonds 
2011−2015
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Figure 15.8: Correlation between
stocks and government bonds (left);
correlation between corporate bonds
and real estate (right).Example 2: stocks and bonds.

The bivariate normal distribution is useful for more than simply
describing regression to the mean. We can also use it as a building
block for describing the joint probability distribution for two corre-
lated random variables. As a final example, let’s look at correlation
between different pairs of financial assets.

First, say that X1 is the return on the S&P 500 index next month,
while X2 is the return on 30-year treasury bond next month.7 7 Recall that a Treasury bond entailed

lending money to the U.S. federal
government and collecting interest in
return.

These two variables are almost sure to be correlated, although the
magnitude and even the direction of this correlation has changed
a lot over the last century. The conventional explanation for this is
the so-called “flight to quality” effect: when stock prices plummet,
investors get scared and pile their money into safer assets (like
bonds), thereby driving up the price of those safer assets. This
effect will typically produce a negative correlation between the
returns of stocks and bonds held over a similar period.8 The left 8 This need not happen. In fact, a “flight

to quality” effect can also produce a
positive correlation between U.S. stocks
and bonds. If you’re interested in more
detail, see this short article written by
two economists at the Reserve Bank of
Australia.

panel of Figure 15.8 shows the 2011-2015 monthly returns for long-
term U.S. Treasury bonds versus the S&P 500 stock index, together
with the best-fitting bivariate normal approximation.

Next, consider the right panel of Figure 15.8, which shows re-
turns for real-estate investment trusts (X1) and corporate bonds

http://www.rba.gov.au/publications/bulletin/2014/sep/pdf/bu-0914-8.pdf
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Figure 15.9: Final value of 36-month
investments in 50/50 mixes of: (1)
stocks and government bonds (left),
and (2) corporate bonds and real estate
(right).

(X2). These assets’ monthly returns were positively correlated, pre-
sumably because they both respond in similar ways to underlying
macroeconomic forces.

How do these patterns of correlation affect the medium-term
growth of a portfolio of mixed assets? To understand this, we’ll
run a Monte Carlo simulation where we chain together the results
of 36 months (3 years) of investment. We’ll compare two portfo-
lios with an initial value of W0 = $10, 000: a mix of stocks (X1)

and government bonds (X2), versus a mix of real-estate (X1) and
corporate bonds (X2). We’ll let Wt,1 and Wt,2 denote the amount
of money you have at step t in assets 1 and 2, respectively. Each
36-month period will be simulated as follows, starting with month
t = 1 and ending with month t = 36.

(1) Simulate a random return for month t from the bivariate nor-
mal probability model: (Xt1, Xt2) ∼ N(µ1, µ2, σ1, σ2, ρ).

(2) Update the value of your investment to account for the period-
t returns in each asset:

Wt+1,i = Wt,i · (1 + Xt,i)

for i = 1, 2.
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At every step, your current total wealth is Wt = Wt,1 + Wt,2. For
the sake of illustration, we’ll assume that the initial allocation is a
50/50 mix, so that W0,1 = W0,2 = $5, 000.

Figure 15.9 shows the results of this simulation, assuming that
returns following the bivariate normal distributions fit to the data
in Figure 15.8. Clearly the 50/50 mix of stocks and government
bonds is preferred under this scenario: it has both a higher re-
turn and a lower variance than the mix of corporate bonds and
real-estate. In particular, in the second portfolio, the positive corre-
lation between corporate bonds and real estate is especially trou-
blesome. This results in a portfolio with far higher variance than
necessary, because the ups and the downs tend to occur together.

Two major caveats here are: (1) the assumption that future re-
turns will be statistically similar to past returns, and (2) that we
can describe correlation among pairs of asset returns using a bi-
variate normal. Both of these assumptions can be challenged.
Therefore, it’s better to think of simulations like these as a way of
building scenarios under various assumptions about future perfor-
mance, rather than as a firm guide to what it is likely to happen.

Functions of random variables (advanced topic)

A very important set of equations in probability theory describes
what happens when you construct a new random variable as a
linear combination of other random variables—that is, when

W = aX + bY + c

for some random variables X and Y and some constants a, b, and
c.

The fundamental question here is: how does joint variation in
X and Y (that is, correlation) influence the behavior a random
variable formed by adding X and Y together? To jump straight to
the point, it turns out that

E(W) = aE(X) + bE(Y) + c (15.4)

var(W) = a2 var(X) + b2 var(Y) + 2ab cov(X, Y) . (15.5)

Why would you care about a linear combination of random
variables? Consider a few examples:

• You know the distribution for X, the number of points a
basketball team will score in one quarter of play. Then the
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random variable describing the points the team will score in
four quarters of play is W = 4x.

• A weather forecaster specifies a probability distribution for
tomorrow’s temperature in Celsius (a random variable, C).
You can compute the moments of C, but you want to convert
to Fahrenheit (another random variable, F). Then F is also a
random variable, and is a linear combination of the one you
already know: F = (9/5)C + 32.

• You know the joint distribution describing your uncertainty
as to the future prices of two stocks X and Y. A portfolio
of stocks is a linear combination of the two; if you buy 100

shares of the first and 200 of the second, then

W = 100X + 200Y

is a random variable describing the value of your portfolio.

• Your future grade on the statistics midterm is X1, and your
future grade on the final is X2. You describe your uncertainty
for these two random variables with some joint distribution.
If the midterm counts 40% and the final 60%, then your final
course grade is the random variable

C = 0.4X1 + 0.6X2 ,

a linear combination of your midterm and final grades.

• The speed of Rafael Nadal’s slice serve is a random variable
S1. The speed on his flat serve is S2. If Rafa hits 70% slice
serves, his opponent should anticipate a random service
speed equal to 0.7S1 + 0.3S2.

In all five cases, it is useful to express the moments of the new
random variable in terms of the moments of the original ones.
This saves you a lot of calculational headaches! We’ll now go
through the mathematics of deriving Equations (15.4) and (15.5).

Multiplying a random variable by a constant

Let’s first examine what happens when you make a new random
variable W by multiplying some other random variable X by a
constant:

W = aX .
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This expression means that, whenever X = x, we have W =

ax. Therefore, if X takes on values x1, . . . , xn with probability
p1, . . . , pn, then we know that

E(X) =
n

∑
i=1

xi pi ,

and so

E(W) =
n

∑
i=1

axi pi = a
n

∑
i=1

xi pi = aE(X) .

The constant a simply comes out in front of the original expected
value. Mathematically speaking, this means that the expectation is
a linear function of a random variable.

The variance of W can be calculated in the same way. By defini-
tion,

var(X) =
n

∑
i=1

pi{xi − E(X)}2 .

Therefore,

var(W) =
n

∑
i=1

pi{axi − E(W)}2

=
n

∑
i=1

pi{axi − aE(X)}2

=
n

∑
i=1

pia2{xi − E(X)}2

= a2
n

∑
i=1

pi{xi − E(X)}2

= a2 var(X)

Now we have a factor of a2 out front.
What if, in addition to multiplying X by a constant a, we also

add another constant c to the result? This would give us

W = aX + c .

To calculate the moments of this random variable, revisit the
above derivations on your own, adding in a constant term of c
where appropriate. You’ll soon convince yourself that

E(W) = aE(X) + c

var(W) = a2var(X) .

The constant simply gets added to the expected value, but doesn’t
change the variance at all.
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A linear combination of two random variables

Suppose X and Y are two random variables, and we define a new
random variable as W = aX + bY for real numbers a and b. Then

E(W) =
n

∑
i=1

pi{axi + byi}

=
n

∑
i=1

piaxi +
n

∑
i=1

pibyi

= a
n

∑
i=1

pixi + b
n

∑
i=1

piyi

= aE(X) + b(E(Y) .

Again, the expectation operator is linear.
The variance of W, however, takes a bit more algebra:

var(W) =
n

∑
i=1

pi

{
[axi + byi]− [aE(X) + bE(Y)]

}2

=
n

∑
i=1

pi

{
[axi − aE(X)] + [byi − bE(Y)]

}2

=
n

∑
i=1

pi

{
[axi − aE(X)]2 + [byi − bE(Y)]2 + 2ab[xi − E(X)][yi − E(Y)]

}
=

n

∑
i=1

pi[axi − aE(X)]2 +
n

∑
i=1

pi[byi − bE(Y)]2 +
n

∑
i=1

pi2ab[xi − E(X)][yi − E(Y)]

= var(aX) + var(bY) + 2abcov(X, Y)

= a2var(X) + b2var(Y) + 2abcov(X, Y)

The covariance of X and Y strongly influences the variance of
their linear combination. If the covariance is positive, then the
variance of the linear combination is more than the sum of the
two individual variances. If the covariance is negative, then the
variance of the linear combination is less than the sum of the two
individual variances.

An example: portfolio choice under risk aversion

Let’s revisit the portfolio-choice problem posed above. Say you
plan to allocate half your money to one asset X, and the other
half to some different asset Y. Look at Equations (15.4) and (15.5),
which specify the expected value and variance of your portfolio in
terms of the moments of the joint distribution for X and Y. If you
are a risk-averse investor, would you prefer to hold two assets with
a positive covariance or a negative covariance?
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To make things concrete, let’s imagine that the joint distribution
for X and Y is given in the table at right. Each row is a possi-
ble joint outcome for X and Y: the first column lists the possible
values of X; the second, the possible values of Y; and the third,
the probabilities for each joint outcome. You should interpret the
numbers in the X and Y columns as the value of $1 at the end of
the investment period—for example, after one year. If X = 1.1
after a year, then your holdings of that stock gained 10% in value.

x y P(x, y)

1.0 1.0 0.15

1.0 1.1 0.10

1.0 1.2 0.05

1.1 1.0 0.10

1.1 1.1 0.20

1.1 1.2 0.10

1.2 1.0 0.05

1.2 1.1 0.10

1.2 1.2 0.15

Table 15.1: Positive covariance.

Under this joint distribution, a single dollar invested in a portfo-
lio with a 50/50 allocation between X and Y is a random variable
W. This random variable has an expected value of 1.1 and variance

var(W) = 0.52var(X) + 0.52var(Y) + 2 · 0.52 · cov(X, Y)

= 0.52 · 0.006 + 0.52 · 0.006 + 2 · 0.52 · (0.002)

= 0.004 ,

for a standard deviation of
√

0.004, or about 6.3%.
What if, on the other hand, the asset returns were negatively

correlated, as they are in the table at right? (Notice which entries
have been switched, compared to the previous distribution.)

x y P(x, y)

1.0 1.0 0.05

1.0 1.1 0.10

1.0 1.2 0.15

1.1 1.0 0.10

1.1 1.1 0.20

1.1 1.2 0.10

1.2 1.0 0.15

1.2 1.1 0.10

1.2 1.2 0.05

Table 15.2: Negative covariance.

Under this new joint distribution, the expected value of $1

invested in a 50/50 portfolio is still 1.1. But since the covariance
between X and Y is now negative, the variance of the portfolio
changes:

var(W) = 0.52var(X) + 0.52var(Y) + 2 · 0.52 · cov(X, Y)

= 0.52 · 0.006 + 0.52 · 0.006 + 2 · 0.52 · (−0.002)

= 0.002 ,

for a standard deviation of
√

0.002, or about 4.5%. Same expected
return, but lower variance, and therefore more attractive to a risk-
averse investor!

What’s going on here? Intuitively, under the first portfolio,
where X and Y are positively correlated, the bad days for X and
Y tend to occur together. So do the good days. (When it rains, it
pours; when it’s sunny, it’s 100 degrees.) But under the second
portfolio, where X and Y are negatively correlated, the bad days
and good days tend to cancel each other out. This results in a
lower overall level of risk.

The morals of the story are:
1. Correlation creates extra variance.
2. Diversify! (Extra variance hurts your compounded rate

of return.)
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Generalized linear models

Binary responses

In many situations, we would like to predict the outcome of a
binary event, given some relevant information:

• Given the pattern of word usage and punctuation in an e-
mail, is it likely to be spam?

• Given the temperature, pressure, and cloud cover on Christ-
mas Eve, is it likely to snow on Christmas Day?

• Given a person’s credit history and income, is he or she likely
to default on a mortgage loan?

In all of these cases, the y variable is the answer to a yes-or-no
question. This is a bit different to the kinds of problems we’ve
become used to seeing, where the response is a real number.

Nonetheless, we can still use regression for these problems.
Let’s suppose, for simplicity’s sake, that we have only one predic-
tor x, and that we let yi = 1 for a “yes” and yi = 0 for a “no.”
One naïve way of forecasting y is simply to plunge ahead with the
basic, one-variable regression equation:

ŷi = E(yi | xi) = β0 + β1xi .

Since yi can only take the values 0 or 1, the expected value of yi

is simply a weighted average of these two cases:

E(yi | xi) = 1 · P(yi = 1 | xi) + 0 · P(yi = 0 | xi)

= P(yi = 1 | xi)

Therefore, the regression equation is just a linear model for the
conditional probability that yi = 1, given the predictor xi:

P(yi = 1 | xi) = β0 + β1xi .
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Figure 16.1: Win frequency versus
point spread for 553 NCAA basketball
games. Actual wins are plotted as
1’s and actual losses as zeros. Some
artificial vertical jitter has been added
to the 1’s and 0’s to allow the dots to be
distinguished from one another.

This model allows us to plug in some value of xi and read off the
forecasted probability of a “yes” answer to whatever yes-or-no
question is being posed. It is often called the linear probability
model, since the probability of a “yes” varies linearly with x.

Let’s try fitting it to some example data to understand how
this kind of model behaves. In Table 16.1 on page 301, we see an
excerpt of a data set on 553 men’s college-basketball games. Our y
variable is whether the home team won (yi = 1) or lost (yi = 0).
Our x variable is the Las Vegas “point spread” in favor of the
home team. The spread indicates the betting market’s collective
opinion about the home team’s expected margin of victory—or
defeat, if the spread is negative. Large spreads indicate that one
team is heavily favored to win. It is therefore natural to use the
Vegas spread to predict the probability of a home-team victory in
any particular game.

Figure 16.1 shows each of the 553 results in the data set. The
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home-team point spread is plotted on the x-axis, while the result
of the game is plotted on the y-axis. A home-team win is plotted
as a 1, and a loss as a 0. A bit of artificial vertical jitter has been
added to the 1’s and 0’s, just so you can distinguish the individual
dots.

Game Win Spread

1 0 -7
2 1 7

3 1 17

4 0 9

5 1 -2.5
6 0 -9
7 1 10

8 1 18

9 1 -7.5
10 0 -8

...
552 1 -4.5
553 1 -3

Table 16.1: An excerpt from a data set
on 553 NCAA basketball games. “Win”
is coded 1 if the home team won the
game, and 0 otherwise. “Spread” is the
Las Vegas point spread in favor of the
home team (at tipoff). Negative point
spreads indicate where the visiting
team was favored.

The horizontal black lines indicate empirical win frequencies
for point spreads in the given range. For example, home teams
won about 65% of the time when they were favored by more than
0 points, but less than 10. Similarly, when home teams were 10–20

point underdogs, they won only about 20% of the time.
Finally, the dotted red line is the linear probability fit:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.524435 0.019040 27.54 <2e-16 ***
spread 0.023566 0.001577 14.94 <2e-16 ***
---

Residual standard error: 0.4038 on 551 degrees of freedom

Multiple R-squared: 0.2884

This is the result of having regressed the binary yi’s on the point
spreads, simply treating the 1’s and 0’s as if they were real num-
bers. Under this model, our estimated regression equation is

E(yi | xi) = P(yi = 1 | xi) = 0.524 + 0.024 · xi .

Plug in an x, and read off the probability of a home-team victory.
Here, we would expect the intercept to be 0.5, meaning that the
home team should win exactly 50% of the time when the point
spread is 0. Of course, because of sampling variability, the esti-
mated intercept β̂0 isn’t exactly 0.5. But it’s certainly close—about
1 standard error away.

The linear probability model, however, has a serious flaw. Try
plugging in xi = 21 and see what happens:

P(yi = 1 | xi = 21) = 0.524 + 0.024 · 21 = 1.028 .

We get a probability larger than 1, which is clearly nonsensical.
We could also get a probability less than zero by plugging in x1 =

−23:

P(yi = 1 | xi = −23) = 0.524− 0.024 · 23 = −.028 .

The problem is that the straight-line fit does not respect the rule
that probabilities must be numbers between 0 and 1. For many
values of xi, it gives results that aren’t even mathematically legal.
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Link functions and generalized linear models

The problem can be summarized as follows. The right-hand
side of the regression equation, β0 + β1xi, can be any real number
between −∞ and ∞. But the left-hand side, P(yi = 1 | xi), must
be between 0 and 1. Therefore, we need some transformation g
that takes an unconstrained number from the right-hand side, and
maps it to a constrained number on the left-hand side:

P(yi | xi) = g(β0 + β1xi) .

Such a function g is called a link function; a model that incorpo-
rates such a link function is called a generalized linear model, or
GLM. The part inside the parentheses (β0 + β1xi) is called the
linear predictor.

We use link functions and generalized linear models in most sit-
uations where we are trying to predict a number that is, for what-
ever reason, constrained. Here, we’re dealing with probabilities,
which are constrained to be no smaller than 0 and no larger than
1. Therefore, the function g must map real numbers on (−∞, ∞) to
numbers on (0, 1). It must therefore be shaped a bit like a flattened
letter “S,” approaching zero for large negative values of the linear
predictor, and approaching 1 for large positive values.

Figure 16.2 contains the most common example of such a link
function. This is called the logistic link, which gives rise to the
logistic regression model:

P(yi = 1 | xi) = g(β0 + β1xi) =
eβ0+β1xi

1 + eβ0+β1xi
.

Think of this as just one more transformation, like the logarithm
or powers of some predictor x. The only difference is that, in this
case, the transformation gets applied to the whole linear pre-
dictor at once. The logistic regression model is often called the
logit model for short.1 1 The “g” in “logit” is pronounced

softly, like in “gentle” or “magic.”With a little bit of algebra, it is also possible to isolate the linear
predictor β0 + β1xi on one side of the equation. If we let pi denote
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Figure 16.2: The logistic link function.

the probability that yi = 1, given xi, then

pi =
eβ0+β1xi

1 + eβ0+β1xi

pi + pieβ0+β1xi = eβ0+β1xi

pi = (1− pi)eβ0+β1xi

log
(

pi
1− pi

)
= β0 + β1xi

Since pi = P(yi = 1 | xi, we know that 1− pi = P(yi = 0 | xi).
Therefore, the ratio pi/(1− pi) is the odds in favor of the event
yi = 1, given the predictor xi. Thus the linear predictor β0 + β1xi

(on the right-hand side of the last equation) gives us the logarithm
of the odds in favor of success (yi = 1), on the left-hand side of the
last equation.
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Figure 16.3: Win frequency versus
point spread for 553 NCAA basketball
games. Actual wins are plotted as
1’s and actual losses as zeros. Some
artificial vertical jitter has been added
to the 1’s and 0’s to allow the dots to be
distinguished from one another.

The logistic regression fit for the point-spread data

Let’s return briefly to the data on point spreads in NCAA basket-
ball games. The figure above compares the logistic model to the
linear-probability model. The logistic regression fit (β̂0 = 0.117,
β̂1 = 0.152) eliminates the undesirable behavior of the linear
model, and ensures that all forecasted probabilities are between
0 and 1. Note the clearly non-linear behavior of the dotted blue
curve. Instead of fitting a straight line to the empirical success
frequencies, we have fit an S-shape.

Interpreting the coefficients

Interpreting the coefficients in a logistic regression requires a bit of
algebra. For the sake of simplicity, imagine a data set with only a
single regressor xi that can take the values 0 or 1 (a dummy vari-
able). Perhaps, for example, xi denotes whether someone received
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the new treatment (as opposed to the control) in a clinical trial.
For this hypothetical case, let’s consider the ratio of two quanti-

ties: the odds of success for person i with xi = 1, versus the odds
of success for person j with xj = 0. Denote this ratio by Rij. We
can write this as

Rij =
Oi
Oj

=
exp{log(Oi)}
exp{log(Oj)}

=
exp{β0 + β1 · 1}
exp{β0 + β1 · 0}

= exp{β0 + β1 − β0 − 0}
= exp(β1) .

Therefore, we can interpret the quantity eβ1 as an odds ratio. Since
Rij = Oi/Oj, we can also write this as:

Oi = eβ1 ·Oj .

In words: if we start with x = 0 and move to x = 1, our odds of
success (y = 1) will change by a multiplicative factor of eβ1 .

For this reason, we usually refer to the exponentiated coefficient
eβ j as the odds ratio associated with predictor j.

Advanced topic: estimating the parameters of the logistic regression model

In previous chapters we learned how to estimate the parameters
of a linear regression model using the least-squares criterion. This
involved choosing values of the regression parameters to minimize
the quantity

n

∑
i=1

(yi − ŷi)
2 ,

where ŷi is the value for yi predicted by the regression equation.
In logistic regression, the analogue of least-squares is Gauss’s

principle of maximum likelihood, which we introduced when
discussing the normal linear regression model. The idea here is to
choose values for β0 and β1 that make the observed patterns of 1’s
and 0’s look as likely as possible.

To understand how this works, observe the following two facts:

• If yi = 1, then we have observed an event that occurred with
probability P(yi = 1 | xi). Under the logistic-regression
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model, we can write this probability as

P(yi = 1 | xi) =
eβ0+β1xi

1 + eβ0+β1xi

• If yi = 0, then we have observed an event that occurred with
probability P(yi = 0 | xi) = 1− P(yi = 1 | xi). Under the
logistic regression model, we can write this probability as

1− P(yi = 1 | xi) = 1− eβ0+β1xi

1 + eβ0+β1xi

Since all of the individual 1’s and 0’s are independent, given the
parameters β0 and β1, the joint probability of all the 1’s and 0’s is
the product of their individual probabilities. We can write this as:

P(y1, . . . , yn) = ∏
i:yi=1

(
eβ0+β1xi

1 + eβ0+β1xi

)
· ∏

i:yi=0

(
1− eβ0+β1xi

1 + eβ0+β1xi

)
.

This expression is our likelihood: the joint probability of all our data
points, given some particular choice of the model parameters.2 2 Remember that the big ∏ signs mean

“product,” just like ∑ means “sum.”
The first product is for the observations
where yi was a 1, and the second
product is for the observations where yi
was a 0.

The logic of maximum likelihood is to choose values for β0 and β1

such that P(y1, . . . , yn) is as large as possible. We denote these
choices by β̂0 and β̂1. These are called the maximum-likelihood
estimates (MLE’s) for the logistic regression model.

This likelihood is a difficult expression to maximize by hand
(i.e. using calculus and algebra). Luckily, most major statisti-
cal software packages have built-in routines for fitting logistic-
regression models, absolving you of the need to do any difficult
analytical work.

The same is true when we move to multiple regression, when
we have p predictors rather than just one. In this case, the logistic-
regression model says that

P(yi = 1 | xi1, . . . , xi,p = g(β0 + β1xi) =
eψij

1 + eeψij
, , ψij = β0 +

p

∑
j=1

β jxij

where ψij is the linear predictor for observation i.

Extensions to the basic logit model

The ordinal logit model

We can modify the logistic regression model to handle ordinal
responses. The hallmark of ordinal variables is that they are mea-
sured on a scale that can’t easily be associated with a numerical
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magnitude, but that does imply an ordering: employee evalua-
tions, survey responses, bond ratings, and so forth.

There are several varieties of ordinal logit model. Here we con-
sider the proportional-odds model, which is most easily understood
as a family of related logistic regression models. Label the cate-
gories as 1, . . . , K, ordered in the obvious way. Consider the proba-
bility cik = P(yi ≤ k): the probability that the outcome for the ith
case falls in category k or any lower category. (We call it cik because
it is a cumulative probability of events at least as “low” as k.) The
proportional-odds logit model assumes that the logit transform of
cik is a linear function of predictors:

logit(cik) = log
(

cik
1− cik

)
= ηk + β1xi1 + · · ·+ βpxip .

Crucially, this relationship is assumed to hold for all categories at
once. Because ciK = 1 for the highest category K, we have spec-
ified K − 1 separate binary logit models that all share the same
predictors xj and the same coefficients β j. The only thing that dif-
fers among the models are the intercepts ηk; these are commonly
referred to as the cutpoints. Since the log odds differ only by an
additive constant for different categories, the odds differ by a mul-
tiplicative factor—thus the term “proportional odds.”

To interpret the ordinal-logit model, I find it easiest to re-
express individual fitted values in terms of covariate-specific
category probabilities wik = P(yi = k):

wik = P(yi ≤ k)− P(yi ≤ k− 1) = cik − ci,k−1 ,

with the convention that ci0 = 0. Good software makes it fairly
painless to do this.

The multinomial logit model

Another generalization of the binary logit model is the multi-
nomial logit model. This is intended for describing unordered
categorical responses: PC/Mac/Linux, Ford/Toyota/Chevy,
plane/train/automobile, and so forth. Without a natural ordering
to the categories, the quantity P(yi ≤ k) ceases to be meaningful,
and we must take a different approach.

Suppose there are K possible outcomes (“choices”), again la-
beled as 1, . . . , K (but without the implied ordering). As before,
let wik = P(yi = k). For every observation, and for each of the K
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choices, we imagine that there is a linear predictor ψik that mea-
sures the preference of subject i for choice k. Intuitively, the higher
ψik, the more likely that yi = k.

The specific mathematical relationship between the linear pre-
dictors and the probabilities wik is given the multinomial logit
transform:3 3 Some people, usually computer

scientists, will refer to this as the
softmax function.wik =

exp(ψik)

∑K
l=1 exp(ψil)

ψik = β
(k)
0 + β

(k)
1 xi1 + · · · β(k)

p xip .

Each category gets its own set of coefficients, but the same set of
predictors x1 through xp.

There is one minor issue here. With a bit of algebra, you could
convince yourself that adding a constant factor to each ψik would
not change the resulting probabilities wik, as this factor would
cancel from both the numerator and denominator of the above ex-
pression. To fix this indeterminacy, we choose one of the categories
(usually the first or last) to be the reference category, and set its
coefficients equal to zero.

Models for count outcomes

The Poisson model. For modeling event-count data (photons, mort-
gage defaults in a ZIP code, heart attacks in a town), a useful place
to start is the Poisson distribution. The key feature of counts is
that they must be non-negative integers. Like the case of logistic
regression, where probabilities had to live between 0 and 1, this
restriction creates some challenges that take us beyond ordinary
least squares.

The Poisson distribution is parametrized by a rate parameter,
often written as λ. Let k denote an integer, and yi denote the event
count for subject i. In a Poisson model, we assume that

P(yi = k) =
λk

i
k!

e−λi ,

and we wish to model λi in terms of covariates. Because the rate
parameter of the Poisson cannot be negative, we must employ the
same device of a link function to relate λi to covariates. By far the
most common is the (natural) log link:

log λi = β0 + β1xi1 + · · · βpxip ,
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or equivalently,

λi = exp{β0 + β1xi1 + · · · βpxip} .

As with the case of logistic regression, the model is fit via maximum-
likelihood.

Interpreting the coefficients. Because we are fitting a model on the
log-rate scale, additive changes to an x variable are associated with
multiplicative changes in the y variable. As before, let’s consider
the ratio of two quantities: the rate of events for person i with x1 =

x? + 1, versus the rate of events for person j with x1 = x?. Let’s
further imagine that all other covariates are held constant at values
x2 to xp, respectively. This implies that the only difference between
subjects i and j is a one-unit difference in the first predictor, x1.

We can write their ratio of rates as

Rij =
λi
λj

=
exp{β0 + β1 · (x? + 1) + β2x2 + · · · βpxp}

exp{β0 + β1 · x? + β2x2 + · · · βpxp}

= exp{β1(x? + 1− x?)}
= exp(β1) .

Thus person i experiences events events eβ1 times as frequently as
person j.

Overdispersion. For most data sets outside of particle physics,
the Poisson assumption is usually one of convenience. Like the
normal distribution, it is familiar and easy to work with. It also
has teeth, and may bite if used improperly. One crucial feature
of the Poisson is that its mean and variance are equal: that is, if
yi ∼ Pois(λi), then the expected value of yi is λi, and the standard
deviation of yi is

√
λi. (Since λi depends on covariates, we should

really be calling these the conditional expected value and standard
deviation.)

As a practical matter, this means that if your data satisfy the
Poisson assumption, then roughly 95% of observations should fall
within ±2

√
λi of their conditional mean λi. This is quite narrow,

and many (if not most) data sets exhibit significantly more vari-
ability about their mean. If the conditional variance exceeds the
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conditional mean, the data exhibits overdispersion with respect to the
Poisson, or just overdispersion for short.

Overdispersion can really mess with your standard errors. In
other words, if you use (i.e. let your software use) the Poisson as-
sumption to calculate error bars, but your data are overdispersed,
then you will end up overstating your confidence in the model co-
efficients. Sometimes the effect is dramatic, meaning that the blind
use of the Poisson assumption is a recipe for trouble.

There are three common strategies for handling overdispersion:

(1) Use a quasi-likelihood approach (“family=quasipoisson” in R’s
glm function);

(2) Fit a different count-data model, such as the negative binomial
or Poisson-lognormal, that can accommodate overdispersion;

(3) Fit a hierarchical model.

Alas, these topics are for a more advanced treatment of general-
ized linear models.
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