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This supplement summarizes a topic not discussed in the course packet: bootstrap

resampling for modeling financial assets.

A multiple-asset problem. Recall that the idea of Monte Carlo simulation is to ap-

proximate complicated probability distributions via computer simulations. Up to now we’ve

mainly focused on probability distributions for one variable. But the Monte Carlo method

works for joint distributions of more than one variable, too. The example we’ll consider here

is where the variables X1, . . . , XD are D correlated asset returns in a financial portfolio, with

joint distribution P (X1, . . . , XD).

Suppose that we’re trying to understand the consequences of some asset-allocation de-

cision among these D assets. Let Xj,t be the random variable denoting the return of asset j

during time period t, and that you’re investing over a horizon from t = 1 to t = T . We’ll use

the letter Wt to denote your total wealth at time period t. Thus W0 is your initial wealth,

and WT is your final wealth.

Clearly WT is an extremely complicated random variable that’s a function of all the

intermediate-stage asset returns. The easiest way to model this random variable is via

Monte Carlo simulation. Suppose that you take your initial wealth W0 and allocate it so

that your holdings in the jth asset are W0,j . We’ll phrase this allocation in terms of a set

of portfolio weights cj , which are numbers between 0 and 1 that reflect the desired fraction

of your wealth invested in each asset:

W0,j = cj ·W0 .

For example, let’s say there are two assets, stocks (X1) and bonds (X2), so that D = 2.

Suppose you want to put 70% of your wealth in stocks and 30% in bonds. Then you’d have

c1 = 0.7 and c2 = 0.3. Your portfolio weights are constrained to be nonnegative and to sum

to 1: cj ≥ 0 and
∑

j cj = 1.1

1In the real world, you can sell assets short, which corresponds to a negative portfolio weight. You can
also leverage yourself by borrowing money to invest, which corresponds to a portfolio weight that exceeds
1. So in reality these constraints are relaxed. But while professional investment managers do these things
routinely, you almost surely won’t do either of them while investing your retirement portfolio, so we won’t
deal with this extra complication here.
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To model the trajectory of your wealth over time using Monte Carlo simulation, repeat

the following simulation many times.

(1) For t = 1, . . . , T :

a. Simulate (Xt,1, Xt,2, . . . , Xt,D) from the joint distribution of asset returns.

b. Update Wt,j , the value of your holdings in asset j at time t, using the simulated

returns Xt,j in the simple interest formula:

Wt,j = Wt−1,j · (1 + Xt,j)

c. Optionally, rebalance your portfolio to the target allocation. This has two substeps:

i. Calculate your total wealth at time t:

Wt =
D∑
j=1

Wt,j .

ii. Re-allocate your total wealth Wt to the assets in proportion to their target

weights:

Wt,j = cj ·Wt .

(2) After T time periods, calculate final wealth WT by summing the final holdings in each

asset:

WT =
D∑
j=1

WT,j .

At the end of many simulations, you will have a collection of Monte Carlo samples W
(i)
T for

your final wealth.

Sampling complicated joint distributions. In order to carry out this simulation, we

have to be able to sample from complicated joint distributions. In the special case of two

assets (e.g. stocks and bonds), we have already used a bivariate normal model in Step 1(a)

of the above process.

However, this strategy can easily break down. In general, using parametric probability

models (like the bivariate normal) to describe complicated joint distributions is fraught

with difficulty. A joint distribution is typically very complicated mathematically. We might

be oversimplifying a lot by assuming something like a bivariate normal distribution (or its

generalization to D > 2, called the multivariate normal). Simply put, the model may not fit.

For a high-dimensional joint distribution (large value of D), this is typically the rule rather

than the exception. It’s really hard to find parametric probability models that provide a

good fit to high-dimensional joint distributions.
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To sample from complicated joint distributions while avoiding the oversimplification of

parametric models, a very practical technique is called bootstrap resampling. Suppose we

have M past samples of the random variables of interest, stacked in a matrix or spreadsheet:

X =


X11 X12 · · · X1D

X21 X22 · · · X2D

...

XM1 XM2 · · · XMD

 (1)

where Xij is the ith sample of the jth variable. In our context, the ith row of this spreadsheet

gives the returns/interest rates of D correlated assets on a single day (or month or year,

depending on the time period of interest).

The key idea of bootstrap resampling is the following. We may not be able to describe

what the joint distribution P (X1, . . . , XD) is, but we do know that every row of this X matrix

is a sample from this joint distribution. Therefore, instead of sampling from some theoretical

model for the joint distribution, we will sample from the sample—i.e. we will bootstrap the

past data. Every time we need a new draw from the joint distribution P (X1, . . . , XD), in

Step 1a of the above algorithm, we randomly sample (with replacement) a single row of X.

This would entail a modification of the above algorithm:

(1) For t = 1, . . . , T :

a. Take a sample from the empirical joint distribution (X1, X2, . . . , XD), by resampling

one set of past returns from data collected at the appropriate time scale (e.g. daily

if the time period t is measured in days, yearly if the time period is years). This

entails sampling one row of the big X matrix in Equation 1.

b. Update Wt,j , the value of your holdings in asset j at step t, as before, using the

sampled returns from step 1.

c. Optionally, rebalance your portfolio to the target allocation as before.

(2) As before.
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