
5
Beyond Straight Lines

Key terms and concepts: logistic regression; link function; general-
ized linear model

Binary responses

In many situations, we would like to forecast the outcome of a
binary event, given some relevant information:

• Given the pattern of word usage and punctuation in an e-
mail, is it likely to be spam?

• Given the temperature, pressure, and cloud cover on Christ-
mas Eve, is it likely to snow on Christmas Day?

• Given a person’s credit history and income, is he or she likely
to default on a mortgage loan?

In all of these cases, the Y variable is the answer to a yes-or-no
question. This is a bit different to the kinds of problems we’ve
become used to seeing, where the response is a real number.

Nonetheless, we can still use regression for these problems.
Let’s suppose, for simplicity’s sake, that we have only one predic-
tor x, and that we let yi = 1 for a “yes” and yi = 0 for a “no.”
One naïve way of forecasting y is simply to plunge ahead with the
basic, one-variable regression equation:

E(yi | xi) = b0 + b1xi .

Since yi can only take the values 0 or 1, the expected value of yi
is simply a weighted average of these two cases:

E(yi | xi) = 1 · P(yi = 1 | xi) + 0 · P(yi = 0 | xi)

= P(yi = 1 | xi)

Therefore, the regression equation is just a linear model for the
conditional probability that yi = 1, given the predictor xi:

P(yi = 1 | xi) = b0 + b1xi .
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Figure 5.1: Win frequency versus point
spread for 553 NCAA basketball games.
Actual wins are plotted as 1’s and
actual losses as zeros. Some artificial
vertical jitter has been added to the
1’s and 0’s to allow the dots to be
distinguished from one another.

This model allows us to plug in some value of xi and read off the
forecasted probability of a “yes” answer to whatever yes-or-no
question is being posed. It is often called the linear probability
model, since the probability of a “yes” varies linearly with x.

Let’s try fitting it to some example data to understand how this
kind of model behaves. In Table 5.1 on page 131, we see an excerpt
of a data set on 553 men’s college-basketball games. Our y variable
is whether the home team won (yi = 1) or lost (yi = 0). Our x
variable is the Las Vegas “point spread” in favor of the home team.
The spread indicates the betting market’s collective opinion about
the home team’s expected margin of victory—or defeat, if the
spread is negative. Large spreads indicate that one team is heavily
favored to win. It is therefore natural to use the Vegas spread to
predict the probability of a home-team victory in any particular
game.
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Figure 5.1 shows each of the 553 results in the data set. The
home-team point spread is plotted on the x-axis, while the result
of the game is plotted on the y-axis. A home-team win is plotted
as a 1, and a loss as a 0. A bit of artificial vertical jitter has been
added to the 1’s and 0’s, just so you can distinguish the individual
dots.

Game Win Spread

1 0 -7
2 1 7

3 1 17

4 0 9

5 1 -2.5
6 0 -9
7 1 10

8 1 18

9 1 -7.5
10 0 -8

...
552 1 -4.5
553 1 -3

Table 5.1: An excerpt from a data set
on 553 NCAA basketball games. “Win”
is coded 1 if the home team won the
game, and 0 otherwise. “Spread” is the
Las Vegas point spread in favor of the
home team (at tipoff). Negative point
spreads indicate where the visiting
team was favored.

The horizontal black lines indicate empirical win frequencies
for point spreads in the given range. For example, home teams
won about 65% of the time when they were favored by more than
0 points, but less than 10. Similarly, when home teams were 10–20

point underdogs, they won only about 20% of the time.
Finally, the dotted red line is the linear probability fit:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.524435 0.019040 27.54 <2e-16 ***
spread 0.023566 0.001577 14.94 <2e-16 ***
---

Residual standard error: 0.4038 on 551 degrees of freedom

Multiple R-squared: 0.2884

This is the result of having regressed the binary yi’s on the point
spreads, simply treating the 1’s and 0’s as if they were real num-
bers. Under this model, our estimated regression equation is

E(yi | xi) = P(yi = 1 | xi) = 0.524 + 0.024 · xi .

Plug in an x, and read off the probability of a home-team victory.
Here, we would expect the intercept to be 0.5, meaning that the
home team should win exactly 50% of the time when the point
spread is 0. Of course, because of sampling variability, the esti-
mated intercept bb0 isn’t exactly 0.5. But it’s certainly close—about
1 standard error away.

The linear probability model, however, has a serious flaw. Try
plugging in xi = 21 and see what happens:

P(yi = 1 | xi = 21) = 0.524 + 0.024 · 21 = 1.028 .

We get a probability larger than 1, which is clearly nonsensical.
We could also get a probability less than zero by plugging in x1 =
�23:

P(yi = 1 | xi = �23) = 0.524� 0.024 · 23 = �.028 .
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The problem is that the straight-line fit does not respect the rule
that probabilities must be numbers between 0 and 1. For many
values of xi, it gives results that aren’t even mathematically legal.

Link functions and generalized linear models

The problem can be summarized as follows. The right-hand
side of the regression equation, b0 + b1xi, can be any real number
between �• and •. But the left-hand side, P(yi = 1 | xi), must
be between 0 and 1. Therefore, we need some transformation g
that takes an unconstrained number from the right-hand side, and
maps it to a constrained number on the left-hand side:

P(yi | xi) = g(b0 + b1xi) .

Such a function g is called a link function; a model that incorpo-
rates such a link function is called a generalized linear model; and
the part inside the parentheses (b0 + b1xi) is called the linear pre-
dictor.

We use link functions and generalized linear models in most sit-
uations where we are trying to predict a number that is, for what-
ever reason, constrained. Here, we’re dealing with probabilities,
which are constrained to be no smaller than 0 and no larger than
1. Therefore, the function g must map real numbers on (�•, •) to
numbers on (0, 1). It must therefore be shaped a bit like a flattened
letter “S,” approaching zero for large negative values of the linear
predictor, and approaching 1 for large positive values.

Figure 5.2 contains the most common example of such a link
function. This is called the logistic link, which gives rise to the
logistic regression model:

P(yi = 1 | xi) = g(b0 + b1xi) =
eb0+b1xi

1 + eb0+b1xi
.

Think of this as just one more transformation, like the logarithm
or powers of some predictor x. The only difference is that, in this
case, the transformation gets applied to the whole linear predictor
at once.

With a little bit of algebra, it is also possible to isolate the linear
predictor b0 + b1xi on one side of the equation. If we let pi denote
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Figure 5.2: The logistic link function.

the probability that yi = 1, given xi, then

pi =
eb0+b1xi

1 + eb0+b1xi

pi + pieb0+b1xi = eb0+b1xi

pi = (1� pi)eb0+b1xi

log
✓

pi
1� pi

◆

= b0 + b1xi

Since pi = P(yi = 1 | xi, we know that 1 � pi = P(yi =
0 | xi). Therefore, the ratio pi/(1� pi) is the odds in favor of the
proposition that yi = 1, given the predictor xi. This means that
the b0 + b1xi is a linear predictor for the logarithm of the odds in
favor of success (yi = 1). This is
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Estimating the parameters of the logistic regression model

In previous chapters we learned how to estimate the parameters
of a linear regression model using the least-squares criterion. This
involved choosing values of the regression parameters to minimize
the quantity

n

Â
i=1

(yi � ŷi)2 ,

where ŷi is the value for yi predicted by the regression equation.
In logistic regression, the analogue of least-squares is Gauss’s

principle of maximum likelihood. The idea here is to choose val-
ues for b0 and b1 that make the observed patterns of 1’s and 0’s as
small a miracle as possible.

To understand how this works, observe the following two facts:

• If yi = 1, then we have observed an event that occurred with
probability P(yi = 1 | xi). Under the logistic-regression
model, we can write this probability as

P(yi = 1 | xi) =
eb0+b1xi

1 + eb0+b1xi

• If yi = 0, then we have observed an event that occurred with
probability P(yi = 0 | xi) = 1� P(yi = 1 | xi). Under the
logistic regression model, we can write this probability as

1� P(yi = 1 | xi) = 1� eb0+b1xi

1 + eb0+b1xi

Since all of the individual 1’s and 0’s are independent, given
the parameters b0 and b1, the probability of having observed our
entire data set is the product of the probabilities for the individual
1’s and 0’s. We can write this as:

P(y1, . . . , yn) = ’
i:yi=1

✓

eb0+b1xi

1 + eb0+b1xi

◆

· ’
i:yi=0

✓

1� eb0+b1xi

1 + eb0+b1xi

◆

.

This expression is our likelihood; it is the probability of having ob-
served our data, given some particular configuration of the model
parameters.1 The logic of maximum likelihood is to choose values 1 The big ’ signs mean “product,” just

like Â means “sum.” The first product
is for the observations where yi was
a 1, and the second product is for the
observations where yi was a 0.

for b0 and b1 such that P(y1, . . . , yn) is as large as possible. We
denote these choices by bb0 and bb1. These are called the maximum-
likelihood estimates (MLE’s) for the logistic regression model.
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Figure 5.3: Win frequency versus point
spread for 553 NCAA basketball games.
Actual wins are plotted as 1’s and
actual losses as zeros. Some artificial
vertical jitter has been added to the
1’s and 0’s to allow the dots to be
distinguished from one another.

This likelihood is a difficult expression to maximize by hand
(i.e. using calculus and algebra). Luckily, most major statisti-
cal software packages have built-in routines for fitting logistic-
regression models, absolving you of the need to do any difficult
analytical work.

The logistic regression fit for the point-spread data

Let’s return briefly to the data on point spreads in NCAA basket-
ball games. The figure above compares the logistic model to the
linear-probability model. The logistic regression fit (bb0 = 0.117,
bb1 = 0.152) eliminates the undesirable behavior of the linear
model, and ensures that all forecasted probabilities are between
0 and 1. Note the clearly non-linear behavior of the dotted blue
curve. Instead of fitting a straight line to the empirical success
frequencies, we have fit an S-shape.




