

SDS 383D: Statistical Modeling II

Course syllabus

Spring 2015

Course overview

SSC 383D is a graduate-level course on multivariate statistical modeling. It is intended for Ph.D students in statistics, but also suitable for graduate students in other disciplines with (1) substantial previous statistical training, and (2) an interest in designing bespoke statistical methods for their own data sets.

We will focus on statistical inference arising from formal probability models. Much of the course is taught from a Bayesian perspective, but we will also learn many important ideas in classical statistics and machine learning, as well. Major topics to be covered include: theory of the multivariate normal distribution; mixture models and other latent-variable models; density estimation; hierarchical models; generalized linear models; and “non-iid” models incorporating, for example, spatial or temporal dependence. Examples will be taken from across the social, biological, and physical sciences.

Structure of the course

The course revolves around independent inquiry. Each week I will give you a set of exercises. These will consist of results for you to prove, problems for you to solve, and (more frequently in the second half of the course) data sets for you to analyze. When you come to class, you will present your solutions, and we will discuss them. Not everyone will present every day, but the presentation load will even out over the course of the semester. My own lectures will be a supplement, rather than the main event. The idea is for you to derive the course material on your own, with a bit of guidance from me. As you will gather from this description, the work load is substantial. Expect to spend between 5-10 hours per week, or more, completing the exercises.¹

Your course grade will be determined by three things: (a) the completed exercises that you will turn in every Monday (30%); (b) your level of day-to-day involvement in presenting the exercises in class (30%); and (c) an in-class written final exam (40%). For students doing a degree in a substantive scientific area (as opposed to a more methodologically oriented field like stats, CS, EE, or math), you may replace the in-class

Course Details

Time: M W 2:00–3:30

Place: GDC 1.406

Instructor: James Scott

email: james.scott@mccombs.utexas.edu

Office hours: MW 3:30–4:30

Office: CBA 6.478

<http://jgscott.github.com>

¹ I encourage you to work on your own, so that you may experience the intellectual thrill of re-inventing statistics solely through your own efforts. But you are allowed to discuss things with classmates if you wish.

final with a project related to your research.

Prerequisites

This is a graduate course in statistics, and you will need to do your own heavy lifting, both mathematically and computationally. Because of this, I assume that you have a solid background in the relevant material. The formal prerequisite is SDS 383C, although this is easily waived for students with adequate preparation. The substantive prerequisite is that you are familiar with the following material.

- (1) Linear algebra and multivariable calculus.
- (2) Basic programming skills in a language such as R, Matlab, or Python. The official language of instruction for the course is R, although you are free to use any language you wish.
- (3) Basic probability at the level of Chapters 1–4 of *Introduction to Probability* by Bertsekas and Tsitsiklis. You will not need measure theory.
- (4) Basic mathematical statistics at the level of Casella and Berger's *Statistical Inference*. This covers a lot of ground, so to be more specific, you will need to understand: sufficiency, maximum likelihood, point estimation, hypothesis testing, confidence intervals, sampling distributions, and basic large sample theory. You will not need: ancillarity, completeness, the Rao-Blackwell theorem, most powerful tests.
- (5) An elementary understanding of linear regression, including: the fitted values and residuals of a regression, the interpretation of regression coefficients, the least-squares estimate of coefficients, confidence intervals and hypothesis tests based on normality assumptions, and simple ideas from ANOVA (F tests, decomposition of variance, and so forth).
- (6) Exposure to Bayesian inference in some simple context, e.g. finite spaces ("What is the probability that the patient has the disease, given a positive test?") or simple conjugate families (normal-normal, beta-binomial, etc)

If you are ill-prepared in more than one of these areas, then this course is probably not for you, at least yet. I have listed the areas in rough order of (my own subjective assessment of) the difficulty with which they can be picked up on the fly. Thus if you are missing an item from 1–3, you will have a tough time. But if you know 1–3, you stand a good chance of picking up one of 4–6 pretty quickly, assuming you're willing to put in the work.