
Exercises 4: Backfitting, Gibbs sampling, Hierarchical
Models

Additive models and backfitting

Consider a multiple-regression problem with outcomes yi and predic-
tors xi = (xi1, . . . , xip)T . An additive model takes the form

y = α + f1(x1) + f2(x2) + · · ·+ fp(xp) + ε

for general functions f j, where E(ε) = 0 and var(ε) = σ2. Each indi-
vidual effect can be nonlinear. But just as in linear regression, the effects
from each predictor still add together to give the joint effect. The fk are
sometimes called partial response functions.

Suppose that someone hands you a set of good estimates for all f j,
j 6= k. Define the kth partial residual as the vector y(k) having elements

y(k)
i = yi − α−∑

j 6=k
f j(xij) .

Then we can clearly get a decent estimate for fk by fitting y(k) versus xk

using the tools already in our kit (e.g. local linear regression).
To fit an additive model by backfitting, begin with an initial guess for

all the f j’s. Successively refine your estimate for each partial response
function fk by computing the partial residuals y(k), and regressing these
on xk. Stop when the estimates reach some convergence criterion.1 1 It is not obvious, at least to me, that

this process converges to a unique so-
lution when the predictor variables are
correlated. But it does, for essentially
the same reason (and under the same
kinds of conditions) that the Gauss–
Seidel algorithm works for solving
linear systems.

The data in air.csv contain daily readings on some air-quality mea-
surements for the New York area.2

2 You’ll notice that there are some
missing days in there; we’ll assume that
these are missing at random.

Ozone: Average atmospheric ozone concentration in parts per billion
from 1 PM to 3 PM at Roosevelt Island.

Solar.R: Solar radiation in Langleys in the wavelength range 400–770

nanometers from 8 AM to 12 PM at Central Park.
Wind: Average wind speed in miles per hour between 7 AM and 10 AM

at LaGuardia Airport
Temp: Maximum daily temperature in degrees F at La Guardia Airport.

Write an R function to fit an additive model, and use it to regress ozone
concentration on the other three variables.

At least two issues will need your attention:

1. If you subtract a constant c from f j, and add that same constant
to some other fk, you will get the same regression function for all
values of x. You will therefore need some way to identify them.

2. Should all dimensions have the same smoothing parameter?
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Gibbs sampling

Consider a Bayesian analysis of the multiple linear-regression model,
where y = Xβ + ε. Suppose that the errors are assumed to be i.i.d. Gaus-
sian, ε ∼ N(0, σ2 I). Suppose that we specify an inverse-gamma prior for
σ2, and a simple hierarchical model for the regression coefficients:

(β | τ2) ∼ N(0, τ2 I)

σ2 ∼ IG(a/2, b/2)

τ2 ∼ IG(c/2, d/2)

for fixed choices of a, b, c, d. Remember that an inverse-gamma prior for
a variance v means that 1/v has a Gamma prior. It is most convenient to
parametrize the Gamma distribution in terms of its shape and rate (not
the scale). Thus if 1/v = r ∼ Ga(a, b), then p(r) ∝ ra−1e−br.

(A) Derive the conditional posterior distributions for each model pa-
rameter: p(β | y, σ2, τ2); p(σ2 | y, β, τ2); and p(τ2 | y, β, σ2). Note
that p(β | y, σ2, τ2) is actually a conditional distribution for the
entire block of regression coefficients, rather than each coefficient
individually.

(B) Gibbs sampling3 is like a Bayesian version of backfitting: iteratively 3 After Josiah Willard Gibbs, the father
of modern thermodynamics. Why it is
so named is a story for another day.

take a random draw from each parameter’s conditional distribu-
tion, given the current values of all other parameters. Of course,
unlike in backfitting, the draws will never converge to specific val-
ues as you run the algorithm for more iterations. Rather, they will
build up a Monte Carlo sample from the joint posterior distribution
over all parameters.4

4 This is even less obvious than the fact
that backfitting converges. Formally,
this process defines a Markov chain
whose state space is the parameter
space, and whose stationary distri-
bution is (under suitable regularity
conditions) the joint posterior. Gibbs
sampling is a special case of Markov-
chain Monte Carlo methods. A nice
reference is Monte Carlo Statistical Meth-
ods, by Robert and Casella. An even
better one is Peter Müller’s course here
at UT on Monte Carlo methods.

Load the diabetes data set in the BayesBridge R package, avail-
able from CRAN. This is stored as a list, so to extract the responses
and design matrix, you can use commands such as

Xd = diabetes$x

yd = diabetes$y

The outcome variable is a serum-insulin measurement in diabetes
patients. The predictors are the patient’s age, sex, BMI, and various
other blood measurements. The x matrix has been standardized to
have zero mean and unit `2 norm in each column. Fit a Bayesian
linear model via Gibbs sampling to serum insulin versus the other
predictors. Start with default values for the hyperparameters on
σ2 and τ2 of a, b, c, d = 1. Remember to center the outcome, or to

The following two papers might be
interesting if you want some more
background on choosing priors for
variances in hierarchical models:
(1) “Prior distributions for variance
parameters in hierarchical models,”
by Gelman (Bayesian Analysis, 2006);
and (2) “On the half-Cauchy prior for a
global scale parameter,” by Polson and
Scott (Bayesian Analysis, 2012). Start
with the first paper and only bother
with the second if you really want to
dig deeper here. These should be easy
to find on the web.

include a column in your design matrix for an intercept term.



exercises 4 · ssc 383d 3

Hierarchical models and shrinkage

Math tests

The data set in “mathtest.csv” shows the scores on a standardized math
test from a sample of 10th-grade students at 100 different U.S. urban
high schools, all having enrollment of at least 400 10th-grade students.
(A lot of educational research involves “survey tests” of this sort, with
tests administered to all students being the rare exception.)

Let θi be the underlying mean test score for school i, and let yij be
the score for the jth student in school i. Starting with the “mathtest.R”
script, you’ll notice that the extreme school-level averages ȳi (both high
and low) tend to be at schools where fewer students were sampled.

1. Explain briefly why this would be.

2. Fit a normal hierarchical model to these data via Gibbs sampling:

yij ∼ N(θi, σ2)

θi ∼ N(µ, τ2)

Decide upon sensible priors for the unknown model parameters
(µ, σ2, τ2).

3. Suppose you use the posterior mean θ̂i from the above model to
estimate each school-level mean θi. Define the shrinkage coefficient
κi as

κi =
ȳi − θ̂i

ȳi
,

which tells you how much the posterior mean shrinks the ob-
served sample mean. Plot this shrinkage coefficient for each school
as a function of that school’s sample size, and comment.

Price elasticity of demand

The data in “cheese.csv” are about sales volume, price, and advertisting
display activity for packages of Borden sliced “cheese.” The data are
taken from Rossi, Allenby, and McCulloch’s textbook on Bayesian Statis-
tics and Marketing. For each of 88 stores (store) in different US cities, we
have repeated observations of the weekly sales volume (vol, in terms of
packages sold), unit price (price), and whether the product was adver-
tised with an in-store display during that week (disp = 1 for display).

Your goal is to estimate, on a store-by-store basis, the effect of dis-
play ads on the demand curve for cheese. A standard form of a demand
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curve in economics is of the form Q = αPβ, where Q is quantity de-
manded (i.e. sales volume), P is price, and α and β are parameters to be
estimated. You’ll notice that this is linear on a log-log scale,

log P = log α + β log Q

which you should assume at least initially. Economists would refer to β

as the price elasticity of demand (PED). Notice that on a log-log scale,
the errors enter multiplicatively.

There are several things for you to consider in analyzing this data set.
1. The demand curve might shift (different α) and also change

shape (different β) depending on whether there is a display ad
or not in the store.

2. Different stores will have very different typical volumes, and
your model should account for this.

3. Do different stores have different PEDs? If so, do you really
want to estimate a separate, unrelated β for each store?

4. If there is an effect on the demand curve due to showing a
display ad, does this effect differ store by store, or does it look
relatively stable across stores?

5. Once you build the best model you can using the log-log
specification, do see you any evidence of major model mis-fit?

Propose an appropriate hierarchical model that allows you to address
these issues, and use Gibbs sampling to fit your model.

Gene expression over time

In droslong.csv, you will find a small subset of a time-course DNA
microarray experiment. The gene-expression profiles of 2000 different
genes in the fruit fly (Drosophila) genome are tracked over time during
embryogenesis; you are getting data on 14 of these genes, organized
in three groups (think of these as marking which cellular pathway that
gene influences). For each gene at each time point, there are 3 “technical
replicates”—that is, three copies of the same biological material from
the same fly, run through the same process to measure gene expression.

The question of interest is: how does each gene’s expression profile
change over time, as the process of embryogenesis unfolds? Propose a
hierarchical model for this data that properly reflects its structure. Fit
this model using Gibbs sampling.

A nice graphics package is the “lattice” library. Install and load this;
then try commands such as

xyplot(log2exp~time | gene, data=droslong)
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xyplot(log2exp~time | group, data=droslong)

to begin exploring the structure of this data.

Data augmentation

Read the following paper:

“Bayesian Analysis of Binary and Polychotomous Response Data.”
James H. Albert and Siddhartha Chib. Journal of the American Statisti-
cal Association, Vol. 88, No. 422 (Jun., 1993), pp. 669-679

The surefire way to get this paper is via access to JStor through the UT
Library website. Let me know if this is an issue for you.

The paper describes a Bayesian treatment of probit regression (similar
to logistic regression) using the trick of data augmentation—that is, intro-
ducing “latent variables” that turn a hard problem into a much easier
one. Briefly summarize your understanding of the key trick proposed
by this paper. Then see you if you can apply the trick in the following
context, which is more complex than ordinary probit regression.

In “polls.csv” you will find the results of several political polls from
the 1988 U.S. presidential election. The outcome of interest is whether
someone plans to vote for George Bush (senior, not junior). There are
several potentially relevant demographic predictors here, including the
respondent’s state of residence. The goal is to understand how these
relate to the probability that someone will support Bush in the election.
You can imagine this information would help a great deal in poll re-
weighting and aggregation (ala Nate Silver).

Use Gibbs sampling, together with the Albert and Chib trick, to fit a
hierarchical probit model of the following form:

Pr(yij = 1) = Φ(zij)

zij = µi + xT
ij β .

Here yij is the response (Bush=1, other=0) for respondent j in state i;
Φ(·) is the probit link function, i.e. the CDF of the standard normal dis-
tribution; µi is a state-level intercept term; xij is a vector of respondent-
level demographic predictors; and β is a vector of state-invariant regres-
sion coefficients.

Note: there are severe imbalances among the states in terms of num-
bers of survey respondents! Following the last problem, the key is to
impose a hierarchical prior on the state-level intercepts.
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