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1 Logistic regression

Example data sets and scripts: spam, brca, gardasil, cmc, resume

The linear probability model. In many situations, we would like to forecast the outcome of a
binary event, given some relevant information:

• Given the pattern of word usage and punctuation in an e-mail, is it likely to be spam?

• Given the temperature and cloud cover on Christmas Eve, is it likely to snow on Christmas?

• Given a person’s credit history, is he or she likely to default on a mortgage?

In all of these cases, the y variable is the answer to a yes-or-no question. Nonetheless, we can
still use regression for these problems. Let’s suppose, for simplicity’s sake, that we have only one
predictor x, and that we let yi = 1 for a “yes” and yi = 0 for a “no.” One naïve way of forecasting
y is simply to plunge ahead with the basic, one-variable regression equation:

E(yi | xi ) =β0+β1xi .

Since yi can only take the values 0 or 1, the expected value of yi is simply a weighted average of
these two cases:

E(yi | xi ) = 1 · P (yi = 1 | xi )+ 0 · P (yi = 0 | xi )

= P (yi = 1 | xi )

Therefore, the regression equation is just a linear model for the conditional probability that yi = 1,
given the predictor xi :

P (yi = 1 | xi ) =β0+β1xi .

This model allows us to plug in some value of xi and read off the forecasted probability of a “yes”
answer to whatever yes-or-no question is being posed. It is often called the linear probability
model, since the probability of a “yes” varies linearly with x.
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The logistic link function. The linear probability model is perfectly reasonable in many sit-
uations. But suffers from a noticeable problem. The left-hand side of the regression equation,
P (yi = 1 | xi ), must be between 0 and 1. But the right-hand side, β0 +β1xi , can be any real
number between−∞ and∞. We’d be better off with some transformation g that takes an uncon-
strained number from the right-hand side, and maps it to a constrained number on the left-hand
side:

P (yi | xi ) = g (β0+β1xi ) .

Such a function g is called a link function. A model that incorporates such a link function is
called a generalized linear model; and the part inside the parentheses (β0+β1xi ) is called the linear
predictor, and is often denoted as ψi .

We use link functions and generalized linear models in most situations where we are trying to
predict a number that is, for whatever reason, constrained. Here, we’re dealing with probabilities,
which are constrained to be no smaller than 0 and no larger than 1. Therefore, the function g
must map real numbers on (−∞,∞) to numbers on (0,1). It must therefore be shaped a bit like a
flattened letter “S,” approaching zero for large negative values of ψi , and approaching 1 for large
positive values.

With multiple regressors (xi1, . . . , xi p ), we have

Pr(yi = 1 | xi ) = wi =
exp(β0+β1xi1+ · · ·+βp xi p )

1+ exp(β0+β1xi1+ · · ·+βp xi p )
. (1)

Recall that odds are just a different way of expressing probabilities:

(Odds that yi is 1)=Oi =
wi

1−wi
.

If you churn through the algebra and re-express the logistic-regression equation (1) in terms of
odds, you will see that the log-odds of success—or equivalently the logit transform of the success
probability—are being modeled as a linear function of the predictors:

logit(wi ) = logOi = log

�

wi

1−wi

�

=β0+β1xi1+ · · ·+βp xi p .

A technical aside: this model cannot be fit by least squares. Instead, it is fit via maximum-
likelihood, and requires a nonlinear optimization routine. The most commonly used is a variation
on the Newton–Raphson algorithm called iteratively re-weighted least squares. This can sometimes
break! Thus if you are getting very strange answers

Interpreting the coefficients. For the sake of simplicity, imagine a data set with only a single
regressor xi that can take the values 0 or 1 (a dummy variable). Perhaps, for example, xi denotes
whether someone received the new treatment (as opposed to the control) in a clinical trial.

For this hypothetical case, let’s consider the ratio of two quantities: the odds of success for
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person i with xi = 1, versus the odds of success for person j with x j = 0. Denote this ratio by
Ri j . We can write this as

Ri j =
Oi

O j

=
exp{log(Oi )}
exp{log(O j )}

=
exp{β0+β1 · 1}
exp{β0+β1 · 0}

= exp{β0+β1−β0− 0}

= exp(β1) .

Therefore, we can interpret the quantity eβ1 as an odds ratio. Since Ri j = Oi/O j , we can also
write this as:

Oi = eβ1 ·O j .

In words: if we start with x = 0 and move to x = 1, our odds of success (y = 1) will change by a
multiplicative factor of eβ1 .

The ordinal logit model. We can modify the logistic regression model to handle ordinal re-
sponses. The hallmark of ordinal variables is that they are measured on a scale that can’t easily be
associated with a numerical magnitude, but that does imply an ordering: employee evaluations,
survey responses, bond ratings, and so forth.

There are several varieties of ordinal logit model. Here we consider the proportional-odds
model, which is most easily understood as a family of related logistic regression models. Label the
categories as 1, . . . ,K , ordered in the obvious way. Consider the probability ci k = P (yi ≤ k): the
probability that the outcome for the i th case falls in category k or any lower category. (We call it
ci k because it is a cumulative probability of events at least as “low” as k.) The proportional-odds
logit model assumes that the logit transform of ci k is a linear function of predictors:

logit(ci k ) = log

�

ci k

1− ci k

�

= ηk +β1xi1+ · · ·+βp xi p .

Crucially, this relationship is assumed to hold for all categories at once. Because ciK = 1 for the
highest category K , we have specified K − 1 separate binary logit models that all share the same
predictors x j and the same coefficients β j . The only thing that differs among the models are the
intercepts ηk ; these are commonly referred to as the cutpoints. Since the log odds differ only by an
additive constant for different categories, the odds differ by a multiplicative factor—thus the term
“proportional odds.”

To interpret the ordinal-logit model, I find it easiest to re-express individual fitted values in
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terms of covariate-specific category probabilities wi k = P (yi = k):

wi k = P (yi ≤ k)− P (yi ≤ k − 1) = ci k − ci ,k−1 ,

with the convention that ci0 = 0. Good software makes it fairly painless to do this.

The multinomial logit model. Another generalization of the binary logit model is the multino-
mial logit model. This is intended for describing unordered categorical responses: PC/Mac/Linux,
Ford/Toyota/Chevy, plane/train/automobile, and so forth. Without a natural ordering to the
categories, the quantity P (yi ≤ k) ceases to be meaningful, and we must take a different approach.

Suppose there are K possible outcomes (“choices”), again labeled as 1, . . . ,K (but without the
implied ordering). As before, let wi k = P (yi = k). For every observation, and for each of the K
choices, we imagine that there is a linear predictor ψi k that measures the preference of subject i
for choice k. Intuitively, the higher ψi k , the more likely that yi = k.

The specific mathematical relationship between the linear predictors and the probabilities wi k

is given the multinomial logit transform:

wi k =
exp(ψi k )

∑K
l=1 exp(ψi l )

ψi k = β(k)0 +β
(k)
1 xi1+ · · ·β

(k)
p xi p .

Each category gets its own set of coefficients, but the same set of predictors x1 through xp .
There is one minor issue here. With a bit of algebra, you could convince yourself that adding a

constant factor to each ψi k would not change the resulting probabilities wi k , as this factor would
cancel from both the numerator and denominator of the above expression. To fix this indetermi-
nacy, we choose one of the categories (usually the first or last) to be the reference category, and set
its coefficients equal to zero.

2 Models for count outcomes

Example data sets and scripts: springbok, flutrends

The Poisson model. For modeling event-count data (photons, organisms, heart attacks), a use-
ful place to start is the Poisson distribution. The key feature of counts is that they must be
non-negative integers. Like the case of logistic regression, where probabilities had to live between
0 and 1, this restriction creates some challenges that take us beyond ordinary least squares.

The Poisson distribution is parametrized by a rate parameter, often written as λ. Let k denote
an integer, and yi denote the event count for subject i . In a Poisson model, we assume that

P (yi = k) =
λk

i

k!
e−λi ,
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and we wish to model λi in terms of covariates. Because the rate parameter of the Poisson cannot
be negative, we must employ the same device of a link function to relate λi to covariates. By far
the most common is the (natural) log link:

logλi =β0+β1xi1+ · · ·βp xi p ,

or equivalently,
λi = exp{β0+β1xi1+ · · ·βp xi p} .

As with the case of logistic regression, the model is fit via maximum-likelihood.

Interpreting the coefficients. Because we are fitting a model on the log-rate scale, additive
changes to an x variable are associated with multiplicative changes in the y variable. As before,
let’s consider the ratio of two quantities: the rate of events for person i with x1 = x?+ 1, versus
the rate of events for person j with x1 = x?. Let’s further imagine that all other covariates are held
constant at values x2 to xp , respectively. This implies that the only difference between subjects i
and j is a one-unit difference in the first predictor, x1.

We can write their ratio of rates as

Ri j =
λi

λ j

=
exp{β0+β1 · (x?+ 1)+β2x2+ · · ·βp xp}

exp{β0+β1 · x?+β2x2+ · · ·βp xp}

= exp{β1(x
?+ 1− x?)}

= exp(β1) .

Thus person i experiences events events eβ1 times as frequently as person j .

Overdispersion. For most data sets outside of particle physics, the Poisson assumption is usu-
ally one of convenience. Like the normal distribution, it is familiar and easy to work with. It
also has teeth, and may bite if used improperly. One crucial feature of the Poisson is that its mean
and variance are equal: that is, if yi ∼ Pois(λi ), then the expected value of yi is λi , and the stan-
dard deviation of yi is

Æ

λi . (Since λi depends on covariates, we should really be calling these the
conditional expected value and standard deviation.)

As a practical matter, this means that if your data satisfy the Poisson assumption, then roughly
95% of observations should fall within±2

Æ

λi of their conditional mean λi . This is quite narrow,
and many (if not most) data sets exhibit significantly more variability about their mean. If the
conditional variance exceeds the conditional mean, the data exhibits overdispersion with respect to
the Poisson, or just overdispersion for short.

Overdispersion can really mess with your standard errors. In other words, if you use (i.e. let
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your software use) the Poisson assumption to calculate error bars, but your data are overdispersed,
then you will end up overstating your confidence in the model coefficients. Sometimes the effect
is dramatic, meaning that the blind use of the Poisson assumption is a recipe for trouble.

There are three common strategies for handling overdispersion:

1. Use a quasi-likelihood approach (“family=quasipoisson” in R’s glm function);

2. Fit a different count-data model, such as the negative binomial or Poisson-lognormal, that
can accommodate overdispersion;

3. Fit a hierarchical model.

3 Survival analysis

Example data sets and scripts: colon, recid

Survival times. Suppose that we decide to run an epidemiological cohort study, which is a kind
way of saying that we follow people and wait until something bad happens to them (an “event”).
Let Ti be the time elapsed from the start of the study until the event. The random variable Ti is
often called a survival time—even if the event in question isn’t an actual death—or alternatively, a
failure time.

In most studies of this kind, the goal is to understand how a subject’s survival time depends
on covariates:

• Under which treatment arm of a clinical trial do people survive longer?

• Does this computer screen last longer under manufacturing process A or B?

• Do criminals who read Nietzsche in prison recidivate at higher rates?

There are many ways to proceed. We could directly model F (t ) = P (Ti ≤ t ), the cumulative
distribution function of the random variable Ti . Equivalently, we could model the corresponding
probability density f (t ), or the survival curve S(t ) = 1− F (t ) = P (Ti > t ). This is the most
natural extension of regression analysis—specify a probability model, and describe changes in the
model’s parameters as a function of covariates. Many approaches to survival analysis involve just
this; examples include the Weibull, gamma, and log-normal.

Modeling the hazard function. An alternative approach is to model the hazard function, de-
noted h(t ):

hi (t )≈
P
�

t < Ti < t +∆t | Ti > t
�

∆t
,

for some small time interval of width∆t . We actually define the hazard function using calculus, as
the limit of this quantity as∆t approaches 0. Intuitively, the hazard function is the instantaneous
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rate of failure at time t , conditional upon having survived up to time t . It turns out that the den-
sity f (t ) and the hazard function h(t ) can be used to give mathematically equivalent specifications
of the distribution of the random survival time Ti .

The Cox proportional-hazards model is a model for the hazard function h(t ). It is the most
popular tool for survival analysis because it is simple, and because it can easily accommodate right-
censoring: that is, the presence of subjects in the data set who have not yet experienced a failure by
the end of the study period. Virtually all survival analyses involve right-censoring, which is not
as easily or transparently handled in models for f (t ).

The key assumption of the Cox model is proportionality, or separability. Specifically, it as-
sumes that subject i , having covariates xi1 through xi p , has the hazard function

hi (t ) = h0(t ) · exp
¦

β0+β1xi1+ · · ·βp xi p

©

.

Notice that h0(t ) is a function of the time t . We call this the baseline hazard function. Everything
else on the right-hand side just boils down to a single scalar exp(ψi ) that depends on a subject’s
covariates. This factor uniformly inflates or deflates the baseline hazard across all values of t . The
Cox model is therefore semiparametric, in that it allows a flexible nonparametric model for the
baseline hazard h0(t ), but requires that the effect of covariates enter through a parametric linear
model.

Interpreting the coefficients. Consider the ratio of two hazard functions: the hazard for per-
son i with x1 = x?+ 1, versus the hazard for person j with x1 = x?. As before, we imagine that
all other covariates are held constant at values x2 to xp , respectively. Thus the only difference
between subjects i and j is a one-unit difference in the first predictor.

We can write their ratio of hazard functions as

hi (t )

h j (t )
=

h0(t )exp{β0+β1 · (x?+ 1)+β2x2+ · · ·βp xp}

h0(t )exp{β0+β1x?+β2x2+ · · ·βp xp}

= exp{β1(x
?+ 1− x?)}

= exp(β1) .

Thus person i has a hazard function eβ1 times higher (or lower) than person j . Crucially, this
is assumed to hold across all values of t . This explains why, to summarize the results of a Cox
model, people usually exponentiate the coefficients and quote them as hazard ratios.
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